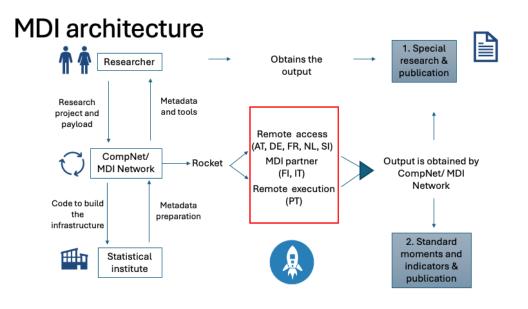
MDI Users Guide

The never-finished manual of the Micro Data Infrastructure

Eric Bartelsman and MDI team


2025-10-02

Contents

Overview of MDI	3
	3 3 3
	0
Stakeholder NSI and Partners	4
The MDI at an NSI site	4
Importing to, and exporting from, the NSI site	5
Initial set-up of MDI at the NSI $(aunch_v2.x)$	6
The directories at the NSI site MDI installation	6
Files in /Users/immarcom/Documents/GitHub/CN-MDI	6
subdirectories of docs (not shown here. MDI documentation)	6
	6
subdirectories of rocket (with code, and (meta)data to support MDI)	6
subdirectories of payload (with analytical code and MD (meta)data)	7
Preparing NSI metadata	8
Launching the rocket and delivering output	8
	9
	9
1. List of NSI dataFiles – <i>NSI</i> datafiles.csv	0
	0
-	2
° –	3
	4
	5
	5
	6
	7
	8
	9
·	23
•	23
	24

Setup for Researcher 20 MDI Rtools 20 Test Server and mockdata environment 20 A rest of the test server 20
Test Server and mockdata environment
Access to the test server $\ldots 2^{\prime}$
Test Server Sysadmin tasks
Module Writers (MDI Users) 2'
Overview of MDI
Writing Modules for MDI Launcher
Key Steps in Module Development 20
Practical module writing
Importing Data
Manipulating Data
Aggregating and exporting
Analysis of MDI Module Output
Stacking metadata output files
Work at NSI 33
Some more details of steps at NSI 3
Preparation for each Launch 33
The Harmonzied MD Longitudinal Firm Panels
MDI Infra Tasks 33
Preparation for Launch and Mission Control
Pre-launch Testing
Lockdown of version
Interaction NSI - MDI during launch
Work on MDI tools
Mockdata
break tasks into small progs (scripts) and tools (functions)
names_select_Module
mdi_mergeDTs()
NSI_initialise()
$\operatorname{mdi}_{\operatorname{export}}()$

Overview of MDI

Introduction to MDI

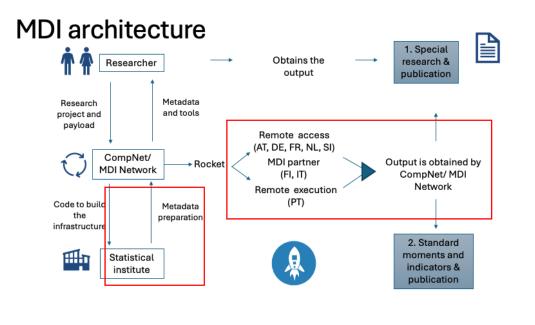
Overview of MDI

The Microdata Infrastructure (MDI) is designed with the dual goal of harmonizing firm-level data across countries and simplifying the research process for conducting cross-country analysis for a wide variety of research "themes". At its core, MDI offers a standardized environment where researchers can run identical analysis at multiple NSIs where the data are made comparable and accessible through a unified framework. The infrastructure supports a range of functionalities from data importation and harmonization to sophisticated analytical outputs, all within a controlled environment to maintain data confidentiality.

Stakeholders in the MDI Ecosystem

- National Statistical Institutes (NSIs) and other Partners
 - NSI remote execution
 - NSI remote access
 - Partners with country-specific (remote) access

NSIs provide the underlying data and support remote execution and/or access to confidential firm-level data. They vary in legal access rules, available data, and technical setups but are the backbone of the standardized MDI research environment.


- Module writers (MDI users)
 - Productivity Boards
 - External Academic and Policy
 - $-\,$ MDI 'Theme' research staff

MDI Users includes productivity boards, external academic and policy researchers, and MDI 'Thematic' research staff. They are responsible for creating research modules that leverage MDI's capabilities for cross-country data analysis.

- MDI staff
 - Country specialists
 - Thematic research personnel
 - Infrastructure support teams

MDI staff ensure the development and smooth operation of the MDI environment, assist NSIs in data preparation and documentation, and assist module writers (MDI Users) with knowledge of data, tools, and research themes.

Stakeholder NSI and Partners

The MDI at an NSI site

- NSIs differ in legal access rules and technical setup for research use of firm-level data. The MDI facilitates access by providing a one-stop method for researchers to run their analysis as payload in an *MDI rocket* in multiple countries. MDI staff negotiates access contracts with each NSI according to national rules.
- NSIs differ in available data files (registers, surveys, administrative data sources) and specifications. The MDI provides researchers with a selection of micro-data (*MD*) panel datasets and variables that look identical across countries to computer code. The statistical and economic concepts are harmonized and the construction of the MD panels and variables from the underlying NSI sources are transparently documented.
- MDI metadata describe in each country the available files (surveys or register data), variables, and classification lists and are used to map all underlying data to the specification of harmonized MD

firm-level panels

- At every NSI (including the mock data site), the MDI environment looks the same to the code in the rocket and its payload
- The rocket runs at the NSI in the MDI environment; reads data and metadata; and creates harmonized microdata (MD) panels.
- The 'payload' consists of research modules written in R with standardized tools and launch specific metadata. The payload code will generate statistical and analytical output in each country that can pass statistical disclosure. The output can therefore can be used for further cross-country analysis.

Importing to, and exporting from, the NSI site

- Whenever an import or export operation needs to be carried out from/to an environment, one should keep in mind how long it takes to do so and whether it involves a monetary cost
- The following table summarizes this information:

Country	Туре	Time	Cost
NL	Import code/ metadata	1-2 days	free of charge
NL	Import data	1-2 days	free of charge
NL	Export code/ metadata	1-2 days	free of charge
NL	Light export results/ analysis	1-2 days	125 Euro
NL	Other export results/ analysis	1-2 days	250 Euro
SI	Import code/ metadata	1 day	free of charge
SI	Import data	1 day	free of charge
SI	Export code/ metadata	20-30 days	free of charge
SI	Light export results/ analysis	10-20 days	free of charge
\mathbf{SI}	Other export results/ analysis	10 days	free of charge
FR	Import code/ metadata	1-2 days	free of charge
FR	Import data	1-2 days	free of charge
FR	Export code/ metadata	1-2 days	318 Euro for a 10 unit output package
FR	Light export results/ analysis	1-2 days	318 Euro for a 10 unit output package
FR	Other export results/ analysis	1-2 days	318 Euro for a 10 unit output package
\mathbf{PT}	Import code/ metadata	few days	free of charge
\mathbf{PT}	Light export results/ analysis	few days	free of charge
\mathbf{PT}	Other export results/ analysis	few days	free of charge
FI	Import code/ metadata	2-3 days	free of charge
\mathbf{FI}	Light export results/ analysis	2-3 days	free of charge
FI	Other export results/ analysis	2-3 days	free of charge
AT	Import files	21-45 days	most cases 1h * 118 Euro
AT	Export files	21-45 days	most cases 1h * 118 Euro

• In general, the files to be downloaded from MDI to the NSI, are stored in a TEAMS directory accessible to that NSI tema. The files are on the 'download' directory of a sharepoint file that you can share to your own machine, for example: "../OneDrive-SharedLibraries-IWHEconomicStudiesLab/MDI Data Providers Forum - PT"

• Each NSI also gets an MDI TEAMS directory 'upload' to upload output from the rocket.

Initial set-up of MDI at the NSI (launch_v2.x)

- For the *first time* using MDI, find a directory to place all the MDI files and subdirectories. The person setting up the MDI and running MDI rockets need to have read and write access to the directories and their subdirectories
- Install the four MDI directories—to be found on the MDI TEAMS cloud directory—under the main 'root' directory chosen for MDI:
 - docs (documentation of the MDI system, including this MDI Manual)
 - rocket (code to support and control MDI rocket launches, NSI metadata, auxilliary data)
 - payload (Research modules, includes metadata: NSI-specific NSI_MD concordances)
 - launchpad (NSI specific information to control MDI code and rocket launches)
- Make sure the user and the R programs have read access to the directory with raw data files
- Prepare a read/write directory for output files (pre-disclosure) create by the MDI R-code. After disclosure the files in this directory can be uploaded to the MDI TEAMS cloud directory available to the NSI staff.
- Fill in all the parameters needed in the file launchpad/countdown.R, including paths to relevant directories.

The directories at the NSI site MDI installation

Files in /Users/immarcom/Documents/GitHub/CN-MDI

+-- MDI.Rproj

```
+-- MDI_github_commit.csv
```

- +-- README.md
- +-- alldocs
- +-- docs
- +-- launchpad
- +-- mockdata
- +-- payload
- \-- rocket

subdirectories of docs (not shown here. MDI documentation)

directory launchpad (with files to launch MDI)

launchpad +-- README.md +-- countdown.R +-- countdown_MM.R +-- interactive_MDI.R +-- liftoff.R +-- pre_launch_checker.R +-- prepare_NSI.R \-- report_file_changes.R

subdirectories of rocket (with code, and (meta)data to support MDI)

```
rocket
+-- CompNet
+-- MDI_tools
| \-- Tools_edited
```

+	MDIprogs
1	\ metadata_tools
+	NSImetadata
1	+ AT
1	+ DE
1	+ FI
1	+ FR
1	+ NL
1	+ Official
1	+ PT
1	\ Other
1	\ SI
+	Rtools
1	+ R
1	+ Rpackages
1	\ man
+	auxdata
+	control
\	metadata
	+ FR
	+ NL
	<pre>\ generateMetadata</pre>
	\ Archive 2

subdirectories of payload (with analytical code and MD (meta)data)

payload

```
+-- Launch_v2.0
   +-- MDmetadata
Ι
   Ι
       +-- DE
+-- NL
\-- SI
Ι
   \-- Rmodules
Ι
       \-- MP
\-- Launch_v2.1
   +-- MDmetadata
      +-- AT
   +-- DE
   +-- FI
   L
      +-- FR
     +-- NL
   +-- PT
   \-- SI
   \-- Rmodules
       +-- CN
       +-- EN
       +-- FD
          +-- auxdata
       ∖-- auxdata 2
       +-- MO
       +-- MP
```

\-- TC

Preparing NSI metadata

- The NSI provides metadata of available firm-level data files.
- The NSI and MDI staff construct metadata to harmonize and link the raw files to the firm-level panel (MD) datasets, whose standards are described in the metadata of MD panels and variables provided by MDI.
- To aid in preparation of metadata, run countdown.R and choose program prepare_nsi.R (but not before filling out local information in the file launchpad/countdown.R). The preliminary metadata files are written to the dirOUTPUT directory and need to be editted. The instruction are given below in the section Metadata. The completed metadatafiles should be uploaed to the TEAMS directory and will, after processing and checking by the MDI team, be added to the NSImetadata directory for that country. The NSI can then download an updated version of the rocket, including the new metadata.

Launching the rocket and delivering output

- When a new launch date is set, the NSI needs to download the latest version of the docs and rocket directories from the MDI Teams cloud site (if there are new versions available), and overwrite the old versions.
- The new 'payload' subdirectory launch_v2.x directory needs to be downloaded and placed under the payload directory of the main MDI root directory.
- The file countdown.R should be copied to the user's directory and edited. Running countdown.R will allow user to choose further path of execution.
- Two folders need to created (with no constraints on how to name them they can be stored to a directory of preference to the user):
 - Output folder
 - Folder for temporary files
- The following fields need to be manually specified, based on the directory system of the environment:
 - dirMDI: path to the MDI folder
 - CountryCode: 2-letter ISO 3166 code of the country of reference
 - dirINPUTDATA: path to the generic folder where the raw data is stored
 - dirOUTPUT: path to the output folder
 - dirTMPSAVE: path to the folder for temporary files
 - Disclosure parameters
 - * MDIminNumObs: minimum number of firm-level observations underlying computation of cell of output file
 - * MDIdomSh: maximum share of top X firms to meet dominance criterion
 - * MDIdomNr: the X in top X firms.
- The program pre_launch_checker.R (run countdown.R and choose this program) needs to be run before anything else. It performs various checks on the NSI metadata to avoid errors later on. The results of the checks can be found in the file pre_launch_checker_results.txt in the output directory. It shows possible errors that should be adjusted in the NSI metadata. Additionally, two concordance files (NSI_pcc8t0_pcc8t1_conc.csv and NSI_MD_nace_conc.csv) are created using existing concordance files and updating them with the data at the NSI. These concordance table might contain empty values, if no value was previously defined. Missing values need to be filled in manually.

When the concordance files are ready to be used, they need to be moved to the directory indicated in pre_launch_checker_results.txt

- The program liftoff.R, chosen after running countdown.R, will run the MDI rocket and analytical modules. Iterations with the MDI staff may be needed for fixes and patches to the rocket and payload, until the final results are written to the dirOUTPUT directory.
- The files in dirOUTPUT need to be checked for disclosure
- The files in dirOUTPUT can be uploaded to the MDI Teams upload directory.

Mechanics of countdown, liftoff, rocket, payload

- Copy countdown.R from MDI/launchpad/ to your own working directory. Fill in all parameters.
- Run countdown.R and choose which program to run:
- Run pre_launch_checker.R which you should run whenever a new version of the MDI system has been installed. It checks for consistency between NSI metadata known to MDI and the information in the data at the NSI site.
- Run liftoff.R, which calls control/rocket.R
 - rocket.R calls
 - * load_MDIenvironment.R
 - * document_output.R (generates information to document details of launch and output files)
 - * read_MDmetadata.R
 - * read_NSImetadata.R (EB: _datafiles, maybe others....)
 - * read_auxdata.R (deflators for now, maybe WIOD, downstream, maybe these go in modules)
 - * read_firmdata.R (based on selectnames for all modules....)
 - * payload/launch_v2.x/run_modules.R executes the payload modules
 - * cleanup.R cleans up the environment
- Run prepare_NSI.R which sets up the NSI environment to generate metadata
- Run interactive_MDI which you should run whenever working with the MDI system (other than liftoff or prepare).

Specifications for the NSI Metadata

This section summarizes the structure and content of the NSI metadata files. Specifically the metadata documents, in a machine and human readable form, the available data files, the description of the rows of the file (units of observation), the name and description of the variables (columns) in each file, the valid values (class and domain) for that variable in each row. The following paragraphs provide guidance on preparing the country specific metadata files.

Once created, the NSI metadata files need to be uploaded to the TEAMS directory. After the NSI downloads the rocket, the metadata files of the NSI will be in the rocket/NSImetadata/*NSI*/ directory of the MDI infrastructure. The MDI program called pre_launch_checker.R, to be run whenever MDI is updated, will flag inconsistencies and other problems in the metadata.

There are various types of (human- and machinee-readable) metadata files prepared by the NSI: 1. A file that lists the available NSI firm-level datafiles (_datafiles) 2. Files that document the variables and their descriptions for each raw datafile listed above (_varnames). 3. Files that map categorical answers to their description (_codebook). 4. Files that describe classification variables on the datasets (_class, e.g. industry or product codes).

Together with the MDI team, the NSI also creates metadata to aid in harmonizing the NSI data to the MD specification. The MDI team provides, possibly specific to each launch, the metadata describing the MD

datasets and its variables. Further, the MDI team, together with the NSI, provide concordances that are used to harmonize the NSI data files to the common format.

In the filenames for the metadata, the acronym NSI is used. This should be substituted with the 2-letter country code for the country in question (using the ISO3166-2 standard, e.g. NSI = PT). For the MDI metadata, the two letters MD are used, and for the mock data test site, the letters TS are used.

1. List of NSI dataFiles – NSI_datafiles.csv

This file contains the list of all available raw data files on a country's environment. The file has the following columns:

[1] NSI_dataset,NSI_datafile,yearvar,year_start,year_end,format,path,details

where,

- NSI_dataset is the 'generic' name of the NSI datafile
- NSI_datafile is the name of the file in the NSI environment
- yearvar gives name of year variable if NSI_datafile is a panel, empty otherwise
- year_start is the starting year of the data file
- year_end is the last year of the data file (if empty or NA, the file is a panel and includes a variable 'year')
- format is the file extension (csv, sas, stata, etc) of the file (i.e. also the storage format of the data)
- path indicates path of the datafile relative to the NSI data directory (given by the parameter dirINPUTDATA in launchpad/countdown.R)
- details contains additional notes on the file

An example (for NSI=FI, 2018) of the metadata for the raw data files (the columns yearvar, year_end, path and details are omitted for viewing):

NSI dataset	NSI datafile	year start	format
bd	bd2018	2018	CSV
br	br2018	2018	csv
bs	bs2018	2018	csv
cis	cis2018	2018	csv
ifats	ifats2018	2018	CSV
itgs	itgs 2018	2018	CSV
its	its 2018	2018	CSV
ofats	ofats2018	2018	csv
prodcom	prodcom2018	2018	csv
sbs	sbs2018	2018	CSV
ictec	ictec 2018	2018	csv

2. File-specific metadata – NSI_varnames.csv

This file contain the list of all variables in each raw datafile appearing in the column NSI_datafile of NSI_datafiles.csv. Each file has the following columns:

[1] NSI_datafile,NSI_varname, is_key, description, class, domain

where

- NSI_datafile is the name of the file in the NSI environment
- NSI_varname is the name (hopefully mnemonic) of the variable in the raw file
- is_key is a boolean stating whether variable belongs to the (possibly joint) unique keys of the datafile, e.g. firmid, or firmid, year are often the unique key(s).
- description contains a description of the variable, if possible using Eurostat convention
- class is the type of value that the variable holds (e.g. numeric, date, character, logical)
- domain provides information on the values of the variable. See examples below:
 - classification: e.g. list of industry, region, product or codes. (values is metadata filename:
 e.g. NSI_classname_class.csv, which provides a list of permissible values and descriptions)
 - file-specific codebook of categorical answers. (value is metadata filename, e.g. *NSI_codebook.csv containing permissible values, such as 'yes', 'no', 'maybe', or 'small', 'large', 'medium'.
 - For other values:
 - * For monetary values, "1000" (for 1000 Euros)
 - * For dates: "%m%d%Y" (R date-format for mmddyyyy). For 'year' variable, we use "%Y"
 - * For real units, choose from: "ton" (weight, 1000kg), "m3" (volume), "GJ" (energy), "unit" (1 item).

Domain: Expenditures, Quantities, Dates

	Domain	
Measure	Entry	Description
Expenditure	1000	or 1 Euro; 10000000 Euro; etc.
Foreign	1*FXC	or 1000 etc.; Where FXC is an ISO 4217 3-letter currency code
currency		
Employment	1	1 here refers to 1 FTE; or 1000; or 1 Emp if in persons
Numerical	1	1 here refers to 1 unit; or 10; 100; where 'unit' gives unit in lowercase for the variable in the NSI data file
Date	%Y-%m- %d	Use the R date format that matches the values for the NSI date or year variable

Here is an abbreviated list of R date formats:

Format	Description	Example
%a	Abbreviated weekday	Sun, Thu
%A	Full weekday	Sunday, Thursday
%b or $%$ h	Abbreviated month	May, Jul
%B	Full month	May, July
%d	Day of the month 01-31	27,07
%ј	Day of the year 001-366	148, 188
%m	Month 01-12	05, 07
%U	Week 01-53, (start Sunday)	22, 27
%w	Weekday 0-6 (Sunday= 0)	0, 4
$\%\mathrm{W}$	Week 00-53 (start Monday)	21, 27
%x	Date, locale-specific	
%y	Year 2-digit 00-99	84,05
%Y	Year 4-dig: $(69 \text{ to } 99 - 19xx)$	1984, 2005
%C	Century	19, 20
$\%\mathrm{D}$	Date formatted %m/%d/%y	05/27/84, 07/07/08

Format	Description	Example
%u	Weekday 1-7 (Monday=1	7, 4

Domain: Classification or Categorical (factor) variables

Variable	Domain_Entry	Description
Classification variable	NSI_classname_	cAass(official) list, ie NL_nace
Categorical variable		Contains permissible values for categorical (factor) variables, e.g. 'yes', 'no', 'maybe'

Example: Netherlands (SBS, 2018): NL_varnames.

NSI_datafile	NSI_varname	is_key	description	class	domain
sbs2018	ent_id	1	Enterprise ID (identification	character	
sbs2018	sbs_{12110}	0	Turnover	numeric	1000
sbs2018	sbs_{12150}	0	Value added at factor cost	numeric	1000
sbs2018	sbs_12170	0	Gross operating surplus	numeric	1000
sbs2018	sbs_13110	0	Total purchases of goods and s	numeric	1000
sbs2018	sbs_{13310}	0	Personnel costs	numeric	1000
sbs2018	sbs_{13320}	0	Wages and salaries	numeric	1000
sbs2018	sbs_15110	0	Gross investment in tangible g	numeric	1000
sbs2018	sbs_15150	0	Gross investment in machinery	numeric	1000
sbs2018	sbs_{15429}	0	Gross investment in concession	numeric	1000
sbs2018	sbs_{15441}	0	Investment in purchased softwa	numeric	1000
sbs2018	sbs_16110	0	Number of persons employed	numeric	1
sbs2018	sbs_{16130}	0	Number of employees	numeric	1
sbs2018	sbs_{16140}	0	Number of employees in full-ti	numeric	1
sbs2018	sbs_20110	0	Purchases of energy products (numeric	1000
sbs2018	sbs_22110	0	Total intra-mural R & D expend	numeric	1000
sbs2018	sbs_22120	0	Total number of R & D personne	numeric	1000
sbs2018	sbs_type	0	Code to show if data (unit) is	numeric	NL_codebook

3. Codebook for categorical variables – $NSI_$ codebook.csv

This file contains the possible values of a categorical variable and the description that belongs to that value. There rows give the possible values occuring in firm data for a particular NSI_datailfe and NSI_varname. The name of the codebook should be given in the 'domain' columnn of NSI_varnames for the relevant categorical variable.

[1] NSI_dataset,NSI_varname,year,code,description

[NSI_datafile,NSI_varname, year, code , description]

where,

- NSI_dataset is the name of the generic dataset in the NSI environment
- NSI_varname is the name of the variable of that specific raw dataset
- year is the year for which codebook values hold. If empty, holds for all years of the NSI dataset
- code gives all the values of the categorical variable that occur for that NSI_varname in that NSI_datafile
- description gives the description explaining each code value

An example below of the values occuring for the unit of measurement in the SI ENER data for 2012.

NSI_dataset	year	NSI_varname	code	description
MIKRO_INDL_razST	NA	ME	1000 SIT	thousands of slovenian tolars
MIKRO_INDL_razST	NA	ME	EUR	euros
MIKRO_INDL_razST	NA	ME	GJ	Gigajoule - a unit of energy
MIKRO_INDL_razST	NA	ME	MWh	Megawatt-hour - a unit of energy
MIKRO_INDL_razST	NA	ME	TJ	terajoules
MIKRO_INDL_razST	NA	ME	kW	kilowatts
MIKRO_INDL_razST	NA	ME	kg	Kilogram - a unit of mass
MIKRO_INDL_razST	NA	ME	kg N	kilograms of nitrogen
MIKRO_INDL_razST	NA	ME	kg P2O5	Kilogram of Phosphorus Pentoxide - a mea
MIKRO_INDL_razST	NA	ME	kg akt. subst.	Kilogram Active Substance - a measure of
MIKRO_INDL_razST	NA	ME	kg akt.subst	Kilogram Active Substance - a measure of
MIKRO_INDL_razST	NA	ME	kg efekt.	Kilogram Effective - likely a measure of eff
MIKRO_INDL_razST	NA	ME	kos	Cost - possibly referring to cost in monetan
MIKRO_INDL_razST	NA	ME	1	Liter - a unit of volume
MIKRO_INDL_razST	NA	ME	l alc 100%	Liter Alcohol 100% - pure alcohol volume
MIKRO_INDL_razST	NA	ME	m	Meter - a unit of length
MIKRO_INDL_razST	NA	ME	m2	Square Meter - a unit of area
MIKRO_INDL_razST	NA	ME	m3	Cubic Meter - a unit of volume
MIKRO_INDL_razST	NA	ME	par	Pair - possibly referring to a set of two iter
MIKRO_INDL_razST	NA	ME	t	Ton - a unit of mass
MIKRO_INDL_razST	NA	ME	$tiso_SIT$	thousands of slovenian tolars
MIKRO_INDL_razST	NA	ME	$tiso_ ef.ur$	Thousand Effective Hours - likely referring
MIKRO_INDL_razST	NA	ME	tisoč SIT	Thousand Slovenian Tolars - currency unit
MIKRO_INDL_razST	NA	ME	tisoč ef.ur	Thousand Effective Hours - likely referring

4. Classification lists – NSI_classvar_class.csv

This file contains the unique list of codes per year of a specific classification variable in a country. Note that there should be a list for every categorical variable in each dataset. The related table has the following columns:

[1] code, year, description

where,

- code is the list values of the classification variable observed in the data
- year is the related year

• description gives the description for each code value

An sample of rows from the table of NACE codes (in this case the official EU NaceR2 classification):

code	description
C10	Manufacture of food products
C10.1	Processing and preserving of meat and production of meat products
C10.1.1	Processing and preserving of meat
C10.1.2	Processing and preserving of poultry meat
C10.1.3	Production of meat and poultry meat products
C10.2	Processing and preserving of fish, crustaceans and molluscs
C10.2.0	Processing and preserving of fish, crustaceans and molluscs
C10.3	Processing and preserving of fruit and vegetables
C10.3.1	Processing and preserving of potatoes
C10.3.2	Manufacture of fruit and vegetable juice
C10.3.9	Other processing and preserving of fruit and vegetables
C10.4	Manufacture of vegetable and animal oils and fats
C10.4.1	Manufacture of oils and fats
C10.4.2	Manufacture of margarine and similar edible fats
C10.5	Manufacture of dairy products
C10.5.1	Operation of dairies and cheese making
C10.5.2	Manufacture of ice cream
C10.6	Manufacture of grain mill products, starches and starch products
C10.6.1	Manufacture of grain mill products
C10.6.2	Manufacture of starches and starch products

5. Time concordances for classifications – $NSI_classvart0_classvart1_timeconc.csv$

This file contains the a concordance table for classification lists between a code at time t-1 and the corresponding code at t. The reference year is indicated in column year. In other words, t=year.

[1] left,right,year

where,

- left is the code at time t-1
- right is the value(s) the code in column left can take at time t
- year is the reference year

For example, the following table displays how such table looks like for a subset of ITGS codes in PT:

left	right	year
84839010	84839081	2005
$0709 \ 59 \ 10$	$0709 \ 53 \ 00$	2021
29034053	29034535	1995
89020019	89020012	1996

38083023	38085000	2006
$3026969 \\28481000$	$3025490 \\28480000$	$2011 \\ 1995$
3026999	3024590	2011
$\begin{array}{c} 0307 \ 29 \ 05 \\ 84807110 \end{array}$	$\begin{array}{c} 0307 \ 22 \ 90 \\ 84862090 \end{array}$	$\begin{array}{c} 2016 \\ 2006 \end{array}$
44092011	44092100	2006
$\frac{44039100}{1019090}$	$44039110 \\ 1019000$	$2001 \\ 2011$
92059090	92059000	1993
68042211	68042218	1990

Specifications for the MD Metadata

• Work in this section is a collaboration between NSI and MDI staff

_

- In an iterative process, using NSI metadata for each country, and taking into account research needs of MD users, a specification is made of the MD panels and variables.
 - 1. MD_datafiles.csv describe the harmonized panel datasets generated in each launch
 - 2. MD_varnames.csv describe the variables per dataset, with their description, class, and domain.
 - 3. MD classifications: versions of official classifications, such as EU NaceR2 activities or NUTS2 regions
 - 4. MD codebooks: valid values for categorical variables

1. List of micro-dataset (MD) panels – MD_datafiles.csv

This file contains the list of all firm-level MD panels generated by the MDI code and usable by researchers via code modules. The file has following columns:

This file contains the list of all harmonized firm-level micro data panels (MD datafiles) that can be used in research by code in an MDI launch, either individually, or linked at the firm-year level.

[1] MD_dataset,description,details

where,

- MD_dataset is the name of the MD panel (R data.table) at runtime of the launch
- description A description of the panel and its underlying source data
- details contains additional notes on the file

Below is the list of currently available MD panels:

MD_dataset	description	details
BR	Business Register	see: https://ec.europa.eu/eurostat/
BS	Balance Sheet	Balance Sheet on Enterprise groups
BD	Business Dynamics	
SBS	Structural Business Statistics	
CIS	Community Innovation Survey	(only available in even numbered ye
ICTEC	ICT Usage in Enterprises Survey	https://ec.europa.eu/eurostat/cache
ITGS	International Trade in Goods	

ITS	International Trade in Services	
OFATS	Outgoing Foreign Affiliates Statist	
IFATS	Incoming Foreign Affiliates Statsti	
ENER	Energy Use at Firms	in progress harmonization across co
PRODCOM	Production Communitaire by firm and	https://ec.europa.eu/eurostat/web/p

2. Micro-dataset (MD) variables – MD_varnames.csv

This file contains the list of all variables available in all the MD firm-level panel datsets that have been generated by the MDI code using the NSI datafiles, NSI metadata, and the NSI-MD concordances. The file has the following columns:

[1] MD_varname, MD_dataset, is_key, description, class, domain

where

- MD_dataset is the name of the MD firm-level panel dataset, ie BR, SBS, etc.
- MD_varname is the name of the variable in the virtual firm-level dataset
- is_key is a boolean stating whether variable belongs to the (possibly joint) unique keys of the dataset, e.g. firmid, or firmid, year are often the unique key(s).
- description contains a description of the variable, if possible using Eurostat convention
- class is the type of value that the variable holds (e.g. integer, character, boolean etc.)
- domain
 - classification: e.g. list of industry, region, product or codes. (values is metadata filename:
 e.g. *MD_filename_varname_list.csv*, which provides a list of permissible values and descriptions)
 - MD-specific codebook of categorical answers. (value is metadata filename, e.g. MD_codebookname_codes.csv containing permissible values, such as 'yes', 'no', 'maybe'
 - For other values:
 - * For monetary values, "1000" (for 1000 Euros)
 - * For dates: "%m%d%Y" (R date-format for mmddyyyy). For 'year' variable, we use "%Y"
 - * For real units, choose from: "ton" (weight, 1000kg), "m3" (volume), "GJ" (energy), "unit" (1 item).

Domain: Expenditures, Quantities, Dates

Measure	Domain_Entr	y Description
Expenditure	1000 Euro	
Employment	1 FTE	or 1 Emp if in persons
Numerical	1 'unit'	'Unit' gives unit used in NSI data file, or is left blank if just a count.
Date	%Y	For now, we use a R format for 4-digit year as the date variable
Weight	1 kg	
Volume	1 m3	
Area	1 m2	
Length	1 m	
Energy	$1 \mathrm{~GJ}$	GigaJoule

Domain: Classification or Categorical (factor) variables

Variable	Domain_Entry	Description
Classification variable	NSI_classname_	cAass(official) list, ie NL_nace
Categorical variable	NSI_codebook	Contains permissible values for categorical (factor) variables, e.g. 'yes', 'no', 'maybe'

Below is a random sample of 20 rows of the file MD_varnames with harmonized MD variables

MD dataset	MD_varname	description	domain
ICTEC	SIPUINV	purchases: management of	
BR	start nace	Start date for the main a	%d%m%Y
ITS	ebops3	Service nomenclature EBOP	MD_ebops3_class
CIS	newmkt	Did the enterprise introd	-
BS	$\operatorname{profit_los}$	IAS 1.92 EBIT (Earnings	1000
ICTEC	INVSND	sending e-invoices	
BS	depreciati	depreciation (ordinary or	1000
BD	status	BD status in the referenc	$MD_codebook$
SBS	ngos	Gross operating surplus	1000
ICTEC	ITERP	Enterprise Resource Plann	
CIS	funloc	Public funding from local	
PRODCOM	firmid	Unique enterprise identif	
BS	entgrp	Enterprise Group ID	
ICTEC	CC	Buy cloud computing servi	
ITS	firmid	Unique enterprise identif	
CIS	inpdgd	Introduced onto the marke	
BS	div	Dividend payments accordi	1000
CIS	imputed	Code to show if data is o	
ICTEC	BD	firm analyses big data	
CIS	rmacx	Expenditure in acquisitio	1000

3. Classification lists – $MD_classvar_class.csv$

This file contains the unique list of codes per year of a specific classification variable from the MD panels. Note that there should be a list for every categorical variable in each MD datasets. The related table has the following columns:

[code, description]

where,

- code is the list values of the classification variable observed in the data
- description gives the description for each code value

An example of the table for NACE codes (in this case the official EU NaceR2 classification):

code	description
C17.2.2	Manufacture of household and sanitary goods and of toilet requisit
C17.2.3	Manufacture of paper stationery
C17.2.4	Manufacture of wallpaper
C17.2.9	Manufacture of other articles of paper and paperboard
C18	Printing and reproduction of recorded media
C18.1	Printing and service activities related to printing
C18.1.1	Printing of newspapers
C18.1.2	Other printing
C18.1.3	Pre-press and pre-media services
C18.1.4	Binding and related services
C18.2	Reproduction of recorded media
C18.2.0	Reproduction of recorded media
C19	<u>Manufacture of coke and refined petroleum products</u>
C19.1	Manufacture of coke oven products
C19.1.0	Manufacture of coke oven products
C19.2	Manufacture of refined petroleum products
C19.2.0	Manufacture of refined petroleum products
C20	<u>Manufacture of chemicals and chemical products</u>
C20.1	Manufacture of basic chemicals, fertilisers and nitrogen compounds,
C20.1.1	Manufacture of industrial gases

4. Hierarchy files for classifications – MD_classvar_hier.csv

This file contains a series of columns that refer to different nodes of the classification variable in question. With this file, the user can easily aggregate or disaggregate the data based on the different nodes of the classification variable.

The columns of the file are labelled as h_X , where X is a number from 0 to N denoting one of the N available nodes in the variable.

An example of a hierarchy table for NACE codes (in this case the official EU NaceR2 classification):

h_0	h_1	h_2	h_3	h_4
4722	472	47	G	TOT
4312	431	43	F	TOT
5310	531	53	Η	TOT
1081	108	10	\mathbf{C}	TOT
3530	353	35	D	TOT
4622	462	46	G	TOT
6202	620	62	J	TOT
5223	522	52	Η	TOT
2620	262	26	\mathbf{C}	TOT

6311	631	63	J	TOT
4213	421	42	F	TOT
4759	475	47	G	TOT
3832	383	38	Ε	TOT
9102	910	91	R	TOT
162	16	1	А	TOT

5. Codebook for categorical variables - MD_codebook.csv

This file contains the possible values of a categorical variable and the description that belongs to that value. Note that sometimes a particular codebook is 're-used' for multiple variables. The name of the codebook should be given in the 'domain' columnn of the metadata for the file containing the categorical variable.

[MD_dataset,MD_varname, code , description]

where,

- MD_dataset is the name of the MD firm-level panel dataset, ie BR, SBS, etc.
- MD_varname is the name of the variable of that specific MD dataset
- code gives the valid values of the ccategorical variable
- description gives the description for each code value

An example below of the values given for some variables in the MD br business register dataset

MD_dataset	MD_varname	code	description
BD	status	1	born in reference year
BD	status	2	active entire reference year
BD	status	3	dead in reference year
BD	status	4	born and dead in reference year
BR	demo	0	"No demographic relation in ref. year"
BR	demo	1	"Receiving employment from other enterprise in ref. ye
BR	demo	2	"Transfers employment to other enterprise and cease to
BR	demo	3	" Transfers employment to other enterprise and continu
BR	lfo	LL	Limited liability company - include limited liability par
BR	lfo	SP	Sole Proprietor
BR	lfo	PA	Partnership - exclude limited liability partnerships
BR	lfo	GO	Government - local and central government - exclude p
BR	lfo	NB	Non profit body or mutual association
BR	lfo	NP	Natural person(s) - if economically active, code as sole
BR	lfo	ND	Not defined
BR	soe	1	private
BR	soe	2	public
BR	soe	9	not available
BR	soe		missing
ICTEC	aebvalpct	1	Less than 1%
ICTEC	aebvalpct	2	1% or more and less than $5%$

ICTEC	aebvalpct	3	5% or more and less than $10%$
ICTEC	aebvalpct	4	10% or more and less than $25%$
ICTEC	aebvalpct	5	25% or more and less than $50%$
ICTEC	aebvalpct	6	50% or more and less than $75%$
ICTEC	aebvalpct	7	75% or more
ICTEC	aebvalpct	9	not applicable
ICTEC	aebvalpct	Ũ	no answer
ITGS	ctrygrp	1	EU-15
ITGS	ctrygrp	2	EU-13
ITGS	ctrygrp	3	Other Europe
ITGS	ctrygrp	4	Russia
ITGS	ctrygrp	5	China
ITGS	ctrygrp	6	Japan
ITGS	ctrygrp	7	India
ITGS	ctrygrp	8	Brazil
ITGS	ctrygrp	9	USA
ITGS	ctrygrp	10	Canada & Mexico
ITGS	ctrygrp	11	Oceania & Rest of Asia
ITGS	ctrygrp	12	Central Am. & Rest of South Am.
ITGS	ctrygrp	13	Africa
ITGS	ctrygrp	14	Unknown
ITGS	ctrygrp	15	Other
ITS	ctrygrp	1	EU-15
ITS	ctrygrp	2	EU-13
ITS	$\operatorname{ctrygrp}$	3	Other Europe
ITS	ctrygrp	4	Russia
ITS	$\operatorname{ctrygrp}$	5	China
ITS	$\operatorname{ctrygrp}$	6	Japan
ITS	$\operatorname{ctrygrp}$	7	India
ITS	$\operatorname{ctrygrp}$	8	Brazil
ITS	$\operatorname{ctrygrp}$	9	USA
ITS	$\operatorname{ctrygrp}$	10	Canada & Mexico
ITS	$\operatorname{ctrygrp}$	11	Oceania & Rest of Asia
ITS	$\operatorname{ctrygrp}$	12	Central Am. & Rest of South Am.
ITS	$\operatorname{ctrygrp}$	13	Africa
ITS	$\operatorname{ctrygrp}$	14	Unknown
ITS	$\operatorname{ctrygrp}$	15	Other
OFATS	$\operatorname{ctrygrp}$	1	EU-15
OFATS	$\operatorname{ctrygrp}$	2	EU-13
OFATS	$\operatorname{ctrygrp}$	3	Other Europe
OFATS	$\operatorname{ctrygrp}$	4	Russia
OFATS	$\operatorname{ctrygrp}$	5	China

			-
OFATS	$\operatorname{ctrygrp}$	6	Japan
OFATS	$\operatorname{ctrygrp}$	7	India
OFATS	$\operatorname{ctrygrp}$	8	Brazil
OFATS	$\operatorname{ctrygrp}$	9	USA
OFATS	$\operatorname{ctrygrp}$	10	Canada & Mexico
OFATS	$\operatorname{ctrygrp}$	11	Oceania & Rest of Asia
OFATS	$\operatorname{ctrygrp}$	12	Central Am. & Rest of South Am.
OFATS	$\operatorname{ctrygrp}$	13	Africa
OFATS	$\operatorname{ctrygrp}$	14	Unknown
OFATS	$\operatorname{ctrygrp}$	15	Other
ITS	bus	10	Distribution, logistics
ITS	bus	11	Marketing, sales, etc.
ITS	bus	12	ICT and telecom.
ITS	bus	13	Adm., management
ITS	bus	14	R&D, engineering
ITS	bus	15	Other support functions
ITS	bus	16	Royalties and licens fees
ITS	bus	17	Other
PRODCOM	unit	1000 EUR	1000 euro
PRODCOM	unit	$1 \mathrm{GJ}$	Gigajoule - a unit of energy
PRODCOM	unit	1 MWh	Megawatt-hour - a unit of energy
PRODCOM	unit	$1 \mathrm{~TJ}$	terajoules
PRODCOM	unit	1 kW	kilowatts
PRODCOM	unit	1 kg	Kilogram - a unit of mass
PRODCOM	unit	1 kg N	kilograms of nitrogen
PRODCOM	unit	1 kg P2O5	Kilogram of Phosphorus Pentoxide - a measure for fert
PRODCOM	unit	1 kg act. subst.	Kilogram Active Substance - a measure of active ingree
PRODCOM	unit	1 kg efekt.	Kilogram Effective - likely a measure of effective substa
PRODCOM	unit	11	Liter - a unit of volume
PRODCOM	unit	1l alc $100%$	Liter Alcohol 100% - pure alcohol volume
PRODCOM	unit	1 m	Meter - a unit of length
PRODCOM	unit	1 m2	Square Meter - a unit of area
PRODCOM	unit	1 m3	Cubic Meter - a unit of volume
PRODCOM	unit	1 pair	Pair - possibly referring to a set of two items
PRODCOM	unit	1 t	Ton - a unit of mass
PRODCOM	unit	1000 eff. work hrs.	Thousand Effective Hours - likely referring to time or v
PRODCOM	unit	1 piece	Number of pieces
PRODCOM	unit	1 gWh	Gigawatt-hour
PRODCOM	unit	1 kWh	Kilowatt-hour
PRODCOM	unit	gross tonnage	gross tonnage
PRODCOM	unit	1 km	Kilometres
PRODCOM	unit	1 m linear	Linear metres
- 100 2 0 0 111			

PRODCOM	unit	number of steps	Number of steps
PRODCOM	unit	1 piece	pieces
PRODCOM	unit	1 paper roll	Paper rolls
PRODCOM	unit	number	Number
PRODCOM	unit	1000 pieces	Thousands of pieces
PRODCOM	unit	1 carat	carats
PRODCOM	unit	1000 m2	Thousands of squared metres
PRODCOM	unit	1000 m3	Thousands of cubic metres
PRODCOM	unit	1 ml	Millilitres
PRODCOM	unit	1 t SiO2	Tons of silicon dioxide
PRODCOM	unit	$1~\mathrm{kg}~90\%~\mathrm{dry}$	Kilogram of substance 90% dry
PRODCOM	unit	1 Kg H2SO4	Kilogram of sulfuric acid
PRODCOM	unit	1 g	Grams
PRODCOM	unit	1 t N	Tons of nitrogen
PRODCOM	unit	1 t K2O	Tons of potassium oxide
PRODCOM	unit	1 t P2O5	Tons of diphosphorus pentoxide
PRODCOM	unit	1 t TiO2	Tons of titanium dioxide
PRODCOM	unit	1 t Al2O3	Tons of dialuminium trioxide
PRODCOM	unit	1 t B2O3	Tons of diboron trioxide
PRODCOM	unit	1 t Cl	Tons of chlorine
PRODCOM	unit	1 t F	Tons of fluorine
PRODCOM	unit	1 t HCl	Tons of hydrochloric acid
PRODCOM	unit	$1 \mathrm{t} \mathrm{HF}$	Tons of hydrofluoric acid
PRODCOM	unit	1 t H2O2	Tons of hydrogen peroxide
PRODCOM	unit	1 t KOH	Tons of potassium hydroxide (caustic potash)
PRODCOM	unit	1 t NaOH	Tons of sodium hydroxide (caustic soda)
PRODCOM	unit	1 t Na2CO3	Tons of sodium carbonate
PRODCOM	unit	1 t Na2S2O5	Tons of sodium pyrosulphide
PRODCOM	unit	1 t SO2	Tons of sulphur dioxide
PRODCOM	unit	1000 kWh	Thousand kilowatt hours
PRODCOM	unit	ce/el	Number of cells
PRODCOM	unit	CGT	Compensated Gross Tonnes
PRODCOM	unit	kg Cl	Kilogram of chlorine
PRODCOM	unit	kg H2O2	Kilogram of hydrogen peroxide
PRODCOM	unit	kg HCl	Kilogram of hydrogen chloride
PRODCOM	unit	kg K2O	Kilogram of potassium oxide
PRODCOM	unit	kg KOH	Kilogram of potassium hydroxide (caustic potash)
PRODCOM	unit	kg Na2CO3	Kilogram of sodium carbonate
PRODCOM	unit	kg Na2S2O5	Kilogram of sodium metabisulfite
PRODCOM	unit	kg NaOH	Kilogram of sodium hydroxide (caustic soda)
PRODCOM	unit	kg SiO2	Kilogram of silicon dioxide (silica)
PRODCOM	unit	kg TiO2	Kilogram of titanium dioxide

Specifications for metadata needed for the NSI to MD harmonization

- Harmonization of MD panels entails harmonization of units of observation, variable definitions, and variable values
- The key to harmonization is NSI metadata, MD metadata, and NSI to MDI concordances
- The MD standard metadata is found 'iteratively' and can evolve as countries join and as new MDI research users and MDI launches have different data requirements

- Mapping units of 'firms', enterprises, legal units requires knowledge of NSI source data: registers, (weighted) sampling, sample designs
- Harmonizing variable definitions and nomenclature is done through renaming, revaluing or combining NSI variables.
 - In the *NSI*_MD_conc.csv file, information is available to show how an MD variable (from a particular MD dataset) is generated from NSI variables, through the harmonization operations remap, revalue, or redefine.
- Harmonizing values of classification variables is done by reclassifying values over time to MD standard
 - A concordance for each NSI classification version to the MDI standard is needed. Each observed value of the classification code in rawdata needs to be mapped to the MD classification, otherwise the raw data observations are lost. This is done using the concordance file *NSI*_*classname*_MD_*classname*_classconc.csv
- Harmonizing categorical variables is done by recoding between conforming values from codebooks
 - To harmonize data values for categorical variables, a concordance is made between *NSI*_MD_codeconc.csv.
- To concord other data values ((currency) units, date values), R functions are used to revalue
 - E.g. If the domains of the variable in NSI data is 1000 and in MD data 1, then the NSI value is multiplied by 1000. If the NSI value is in an R date-value, say %d%m%Y, an R date function is used convert to the required R date-value.

1. Concordance file – $NSI_MD_conc.csv$

This file contains the list of all variables in a particular MD panel, with information on how to map the NSI variables from one or more raw datafile (often one for each year) to the MD variable. The related table has the following column names:

[1] NSI_dataset, year, NSI_varname, MD_dataset, MD_varname, method, detail

where,

- NSI_dataset is the generic name of the data, that together with year specify the NSI datafile that hosts the variable to be use in concording. If year is empty, the concordance does not change over the years.
- year is the year for which the concordance holds. If empty, the same concordance rows are used for all NSI datafiles associated with the generic NSI_dataset.
- NSI_varname is the name of the variable in the NSI datafile
- MD_dataset is the name of the MD firm-level panel dataset, ie BR, SBS, etc.
- MD_varname is the name of the variable in the MD data source to be generated
- method is the method used to harmonize the data. The value of the categorical variable, provides the method for generating the harmonized variable MD_varname.
 - revalue The values of the variable are changed using an R function and parameters in the column detail and possibly from the class and domains variable from the relevant _varnames files.

The MD metadata and NSI to MDI concordances allow live updates of the MDI data documentation

- recode The values of the variable are changed using a codebook concordance, whose name is given in de details column, e.g. 'NSI_filename_MD_dataset_codeconc.csv'. Only values that need to be changed require a row in the _codeconc.
- reclass The values of the variable are changed using a classification concordance, whose name is given in the details column, 'NSI_classname_MD_classname_classconc.csv'. This is used to reclassify e.g. industry, region classifications.
- remap The name of the variable is changed, in a one-to-one mapping from NSI_Varname to MD_varname.
- redefine The MD variable is generated as a linear combination of the NSI variable. The column detail specifies the linear combination, i.e '+' or '-') in the many-to-one NSI_varname to MD_varname mapping.
- detail contains the function for revalue, the concordance for codebook or classification for recode and remap, and the linear operations for redefine. For revalue, any valid operation operating on the NSI_varname (referred to as x) is good. If the domains of the variable in NSI data is 1000 and in MD data 1, then the NSI value is multiplied by 1000, so detail = x*1000. If the NSI value is in an R date-value, say %d%m%Y, an R date function is used convert to the required R date-value, format(as.Date(x,"%d%m%Y"),"%Y")
- NSI_datafile is the name of the raw dataset from where the NSI_variable is taken from
- year is the reference year for that specific row, which will be used to construct the MD-cross section for that year

An example of the table for a few variables needed for Slovenian harmonized MD BR for year 2007 (columns year and NSI_datafile are omitted):

Warning in `[.data.table`(as.data.table(fread("SI_MD_conc.csv")), year == : column(s) not removed because not found: [NSI_datafile]

NSI_dataset NSI_varname	MD_datase	tMD_varnar	method	detail
MIKRO_PRS_ra 2551 0_razST	BR	firmid	remap	
MIKRO_PRS_ratestro_IZP_MS7_r	ra B AT	entgrp	remap	
MIKRO_PRS_rabatim_prv_vnosa	BR	birthyr	revalue	as.Date(as.character(x), '%d%m%Y')
MIKRO_PRS_ra DS fum_izbrisa	BR	exityr	revalue	as.Date(as.character(x), '%d%m%Y')
MIKRO_PRS_ra S/S 4T	BR	nace	remap	,
MIKRO_PRS_ra VS Ta_lastnine	BR	soe	recode	$SI_MD_codeconc$
MIKRO_PRS_rabstum_prv_vnosa	BR	birthyr	remap	
MIKRO_PRS_ra DS fum_izbrisa	BR	exityr	remap	
MIKRO_PRS_ratesta_lastnine	BR	soe	remap	

2. NSI_MD_codeconc.csv

[NSI_dataset, year, NSI_varname, MD_varname, left, right]

where,

- NSI_dataset is the generic name of the data, that together with year specify the NSI datafile that hosts the variable to be use in concording. If year is empty, the concordance does not change over the years.
- year is the year for which the concordance holds. If empty, the same concordance rows are used for all NSI datafiles associated with the generic NSI_dataset.
- NSI_varname is the name of the variable of the specific NSI datafile associated with dataset and year.

- MD_varname is the name of the corresponding MD variable
- left gives the valid values of the categorical variable in the raw NSI dataset
- ${\tt right}$ gives the corresponding MDI dataset values to map

Below an example of the codebook concordance table for four variable in Portugal:

NSI_dataset	NSI_varname	year	$MD_dataset$	MD_varname	left	right
ifats	imputeifats	NA	IFATS	imputed	1	0
ifats	imputeifats	NA	IFATS	imputed	2	1
itgs	exim	NA	ITGS	exim	1	0
itgs	exim	NA	ITGS	exim	2	1
itgs	imputeitgs	NA	ITGS	imputed	1	0
itgs	imputeitgs	NA	ITGS	imputed	2	1
sbs	imputesbs	NA	SBS	imputed	1	0
sbs	imputesbs	NA	SBS	imputed	2	1
ictec	ICT_Type	NA	SBS	imputed	1	0
ictec	ICT_Type	NA	SBS	imputed	2	1
prodcom	unit	NA	PRODCOM	unit	kg	1 kg
prodcom	unit	NA	PRODCOM	unit	kg act sub	1 kg act. subst.
prodcom	unit	NA	PRODCOM	unit	kg N	1 kg N
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	kg P2O5	1 kg P2O5
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	L	1 l
prodcom	unit	NA	PRODCOM	unit	L alc 100 percent	1l alc $100%$
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	m	1 m
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	m2	1 m2
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	m3	1 m3
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	pair	1 pair
prodcom	unit	NA	PRODCOM	unit	number	number
$\operatorname{prodcom}$	unit	NA	PRODCOM	unit	g	1 g
prodcom	unit	NA	PRODCOM	unit	km	1 km
prodcom	unit	NA	PRODCOM	unit	Tj	$1 \mathrm{TJ}$
prodcom	unit	NA	PRODCOM	unit	kg 90 percent sdt	$1~{\rm kg}$ 90% dry

3. NSI_classname_MD_classname_classconc.csv

[1] left,right

where,

- left is the name of the current NSI classification code list for variable NSI_classname
- right is the name of the MD classification code list the user wants to concord to

Below a sample of the Nace R1.1 to Nace R2.2 classification concordance

left	right
113	128

1910	1511
$1772 \\ 1030$	$1439 \\ 1920$
125	149
1200	721
1723	1320
$\begin{array}{c} 141 \\ 130 \end{array}$	$\begin{array}{c} 163 \\ 150 \end{array}$
201	230

MDI Staff + Module Writers

Setup for Researcher

- Module writers may or may not have access to actual firm-level data in a country
 - MDI documentation with available datasets and variables, plus descriptions, by country-year
 - Code can be tested using mock-data inside launcher run in a 'mock' environment that mimics an NSI
 - An R initialization program' (../launchpad/interactive_MDI.R) sets up the mock-data environment with all the metadata and Rtools.
- Module writers analyse 'consolidated' output
 - The MDI staff will stack the files from each country to create files for analysis by each module writer
 - An R 'initialization program', (../launchpad/interactive_MDI.R), will add Rtools that are useful for analysis (graphs, tables, cross-country panel regressions, etc) (*)

MDI Rtools

- There are five 'types' of R tools
 - Metadata: aid in generating, verifying, and manipulating metadata
 - Infra: to be used by MDI staff and launcher importing data, harmonization, disclosure checking
 - MDI: mostly for module writers, e.g. merge_datatables, regressions, aggregations, export
 - Analysis: help in analytical tasks and reporting
 - Programmer: aid in R coding
- Tools are documented using Roxygen2 and 'exported as package'. Using standar R synatx ?function() will provide the documentation of a function, and clicing on the R package 'mdi' in the package tab of RStudio will bring up the list of functions inside the package.

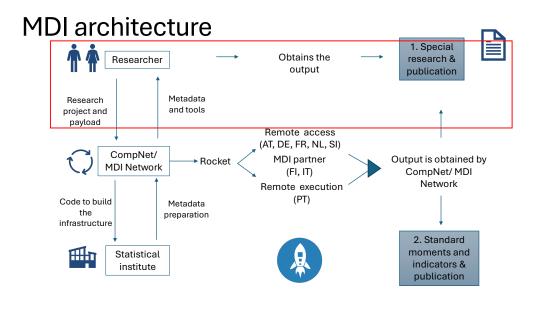
Test Server and mockdata environment

- At present we are using the cloud server mdi.labs.vu.nl. This server can be reached with a command line interface using ssh protocol, or using RStudion, by pointing your browser to https://mdi.labs.vul.nl.
- In Rstudio, you follow similar instructions and an NSI user (link...). First, copy the launchpad/countdown_TS.R file to your user directory, say ~/R, and edit the values appropriates. Countdown_TS already has many parameters set appropriately for the mock data environment. Next, after running countdown, choose, e.g., interactive_MDI.R.
- While working on the server, you have access to the full MD data catalogue, mock versions of all the MD datasets, and all the MDI tools.

 In the mock environment, we also will make available, at a later date, a setup to test analysis of consolidated cross-country output.

Access to the test server

- Please contact the mockdata sysadmin for access. You need to provide the sysadmin with you public key, using keygen: (in Mac OS/ Windows: ssh-keygen -t ed25519; in linux: xxx)
- The sysadmin will give you versions of your 'username', e.g. abcuser, for the two environments.
- Login into the server using (Mac OS/Linux/Windows) ssh abcuser@mdi.labs.vu.nl
- Via browser, go to mdi.labs.vu.nl, with username rs-abcuser and the password providee by the SysAdmin. You can change your password on the server with 'sudo passwd rs-abcuser'


Test Server Sysadmin tasks

- The sysadmin has access to maintain the server and the MDI site. In general, the test server site, (TS), will get identical version as the NSIs. Prior to launch, versions will update continuously, for testing purposes.
 - rocket/MDIprogs/copy_MDI_toTS.txt
- The sysadmin maintains the list of users and user permissions.
 rocket/MDIprogs/TSserver/scripts.txt
- The sysadmin maintains the R and package versions and other necessary tools (eg editors, quarto, pandoc)

- also see rocket/MDIprogs/TSserver/scripts.txt

Module Writers (MDI Users)

This group includes productivity boards, external academic and policy researchers, and MDI 'Theme' research staff. They are responsible for creating research modules that leverage MDI's capabilities for data analysis.

Writing Modules for MDI Launcher

Writing modules for the MDI Launcher is an iterative process that evolves from conceptualization to execution. It requires a good understanding of the research objectives, data structures, and the technical capabilities of the MDI environment.

Key Steps in Module Development

- **Defining the Research Question**: Every module begins with a clear, concise research question. This question should be capable of leveraging the cross-country data available within MDI to generate insightful analyses.
- Workflow Organization: Divide your analysis into manageable segments. Consider general methodology; data selection; design output from NSIs; code using the MDI tools and launcher; plan crosscountry analysis
 - Data Selection: Utilize the MDI data catalog(EB: link to rcode to MD_datafile and MD_varnames files) to select the most relevant datasets and variables for your analysis.
 - Designing Outputs: Plan the outputs of your module carefully, including the datasets, records, and variables to be exported from each NSI.
 - Analysis: Use MDI R-packages and Rtools: See the R-package libraries currently installed at NSIs and loaded at runtime of the launcher (link to file "../rocket/Rtools/Rpackages/record_package_info.csv"). If you need another package, notify MDI-staff to have the package added to NSI requirements. Use standardized functions from the MDI Rtools (link to directory "../rocket/Rtools/R"), especially when preparing output.
 - Export data: Using Rtool mdi_export(), generate output in each NSI, to go through disclosure checks. Collect cross-country consolidated output from TEAMS directory for module writers
- Documentation and Summary: Before coding, document your module's aim, the datasets and variables required, and any additional resources needed that are not part of the standard MDI envi-

ronment. (EB: Link to example of module heading)

Practical module writing

- Generally two 'types' of output
 - Moments and joint moments by using mdi_aggregate()
 - Analytical output: e.g. regression results using mdi_regress()
 - Discuss: what other types are needed?
- Be aware of output size: don't get close to disclosure problems
- Output generated by mdi_export() Other output files are not exported from NSI
- Do not use code that calls 'operating system', creates (sub)directories, installs Rpackages
- Be aware of RAM limitations: be a smart coder and clean up unneeded datasets

Importing Data

- NSI metadata has all needed concordances to make the microdata panels (MD) to standards: The Launcher harmonizes and stores each MD panel. The choices are made in the file .../launchpad/countdown.R (dirTMPSAVE gives file path for saved MD panels, and flags ImportFlag (TRUE), SaveFiles(TRUE) and cleanTMP (TRUE) set logic for rocket.
- The module generated an names_select_Module file (which also was provided to the launcher to generate all the data for all the modules.
 - When reading in a file, ie BR, only read those variables that you selected
 - Double check that your selected variables are indeed available in that country. If not, provide logic in program skipping some analysis or providing and alternative.
- When merging data from two files use mdi_mergeDTs()
 - Only keep needed observations of each and needed variables (see R Joins in session 2)

Manipulating Data

- You are free to manipulate the linked panels in any way, using R
- R data.table is efficient for large datasets. dplyr and tidyverse are convenient syntaxes for many applications
- Since you may not be able to export graphs (we need to check disclosure rules in each site) export a file with enough observations of needed variables to generate display outside using consolidated data
- Hierachies of classifications are very handy to generate ad-hoc aggregations. So, instead of the standard aggregation to 2-digit or 1-digit industries, generate classifications of firms, for example by use of technology and export-status, or by magnitude of mark-ups and rent-sharing. See hier_apply() calling mdi_aggregate().
- There are tools for PIM, pim_capital(), and prod estimation, estimate_prod()

Aggregating and exporting

- Use *mdi_aggregate()* with disclosure=TRUE.
 - Stack aggregate output if they share enough columns and have rows that identify them uniquely.
- Use mdi_regress() to run models.
 - can call various regression functions (fixest package). We want to add plm.
 - generates a row of a datatable for each model that is run
 - checks for underlying number of observations for disclosure flag (especially if run 'by group')
 - Stack regression output if they share enough columns and have rows that identify then uniquely.
- Call mdi_export for output from mdi_aggregate or mdi_regress
- Think of other types of output to generate, check disclosure, and export.

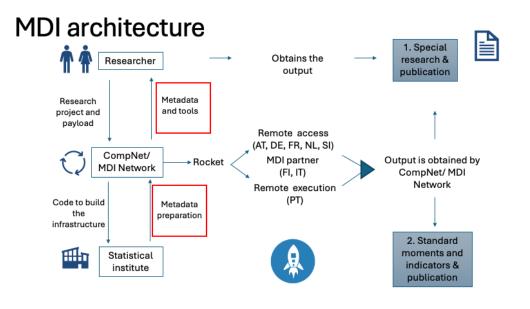
Analysis of MDI Module Output

- NSIs will upload each country's output into their Teams folder
- MDI staff will consolidate (stack) each modules outputs by country and place the module (and general launcher) output in the appropriate Teams fold for modules writers.
- The researcher can run ../launchpad/interactive_MDI.R to set up their MDI environment in a standard manner.
- The researcher analyses the output, possibly using standardized tools for statistical analysis, graphing, reporting.

Stacking metadata output files

- Among the possible files that can be exported from a country's environment there are metadata files.
- In that case, it can be that the number of files is quite large, making it much slower and likely more expensive too for the NSI to carry out the export process.
- For this reason, such metadata files are often stacked into broader aggregations, such as by MD_dataset for the *NSI*_varnames.csv files.
- The following R code provides a way to *unpack* those aggregated metadata files to make sure they are stored in the proper structure.

```
This tool unpacks the (NSI)_(MD_dataset)_varnames.csv files into NSI_dataset-specific varname files.
MD datafiles <- fread(paste0(dirPAYLOAD, 'MDmetadata/MD datafiles.csv'))
MD_varnames <- fread(paste0(dirPAYLOAD, 'MDmetadata/MD_varnames.csv'))</pre>
files <- list.files(paste0(dirROCKET,'NSImetadata/',CountryCode,'/'), recursive = T)</pre>
files <- files[grepl('_varnames',files)]</pre>
for (file in files) {
  data <- fread(paste0(dirROCKET,'NSImetadata/',CountryCode,'/',file))</pre>
  NSI_files <- unique(data$filename)</pre>
  for (NSI_file in NSI_files) {
    data_filt <- data[filename == NSI_file,]</pre>
    data_filt$filename <- NULL</pre>
    names(data_filt) <- c('NSI_varname','is_key','description','class','domain')</pre>
    fwrite(data_filt, paste0(dirROCKET,'NSImetadata/',CountryCode,'/',CountryCode,'_',NSI_file,'_varnames.
  }
}
```


Work at NSI

Some more details of steps at NSI

- Bring MDI directory structure into NSI environment, including Rtools, metadata etc
- Install the needed R packages
- Define root of path to data files
- Place list of all files, with info, into Metadata directory
- Place lists for each 'classification' variables into Metadata directory
- Place list of all variables, by filename, type, and codebook names in Metadata directory
- Provide 'concordances' for classifications and for variable to map to 'MDI' version

Preparation for each Launch

- Fill in country specific parameters in launchpad\countdown.R
- Once for each launch, run prepare_NSI.r for generating new metadata
- Once for each launch run liftoff.R, with countdown.R parameter SaveFiles<-TRUE and cleanTMP<-FALSE. This makes and stores harmonized MD files for use with payload. Keep the temporary files on disk during full launch window, unless re-run is needed
- Run liftoff.R, with countdown.R parameter ImportFlag<-FALSE, so that payload modules will use the above temporary MD files. (if there are fixes to be made to the data, run again with ImportFlag<-TRUE).
- Conduct disclosure checking of files Upload output to Teams (LINK HERE to directory for a particular CC)

The Harmonzied MD Longitudinal Firm Panels

 $\bullet \ {\rm see} \ {\rm ?@sec-nsi}$

- In NL and France, NSI harmonized the raw datafiles to look like MD datasets. Not much concording done by launcher.
- We want to shift the boundary between work of NSI and MDI
 - NSIs document their files: Launcher reads files and uses metadata to generate MD panels.
 - NSI does all harmonization to MD standards: Launcher reads the files into R
- Advantage to having Launcher do the work:
 - Reduce maintenance costs for NSI (annual updates)
 - Improve codification of conceptual work done by NSI staff
 - ...but higher cost to learn rigid method of documentation/codification of metadata and to coordinate with MDI

MDI Infra Tasks

Preparation for Launch and Mission Control

- Pre-launch testing
- Lockdown of version, transfer to TEAMS/NSIs
- Interacting NSI and MDI staff during launch period
- Collecting output

Pre-launch Testing

- Use mdi.labs.vu.nl site, with rs-user login
- Start with fresh R each time (under options, choose to never save and datasets, open files, loaded packages; Quit R before quitting the remote server).
- Always test 'from the beginning'.
- Test using different countdown parameters, on dataset saving, tempdir, disclosure. (discuss with mockdata folks to make data to allow for different types of tests).
- Have a formal testing 'checklist' and have a sub-team approve the release

Lockdown of version

- Lock the R package list
- Make Github branch Launch v2.1
- Run file/program to get github commit of version (Marco?), re-commit Launch_v2.1
- Run scripts to transfer from github to NSI specific Teams site
- Ask NSIs to download. Make a new MDI root directory voor v2.1 (back-up the old one). ave NSI sysadmin update required R packages, and roxygenize and install the MDI package.
- •

Interaction NSI - MDI during launch

- download zip of MDI to dirMDI, keep zip file.
- Edit MDI metadata and progs as needed.
 - Flag if change pertains to other countries. Move up chain, and back to NSIs with fixes
 - In extreme case, decide to relaunch.....
- We write script using R file-info to compare MDI and MDIzip after launch is finished. NSIs send metadata fixes to us, tools fixes are reported...

Work on MDI tools

• Metadata tools: list2hier, hier2cp

- MDI tools
 - improved harmonizing and concording
 - traversing hierarchy
 - index number aggregation
- Infra tools: mock data generation and environment
- Analysis tools: What do we want?

Mockdata

- Mock data is key
 - Code development for Rocket needs to be tested
 - New MDI staff need to be trained
 - Country metadata and concordances need testing, requiring country specific mock data
 - Module writers without NSI access need to practive on country 'TS', with MD metadata
- Specifications for mock data
 - about 5-10% of obs of actual data of a median country
 - unit of observation mimics that in NSI file or MD file (for country TS)
 - fewer unique codes in classifications (say 20%), but full coverage for next level of aggregation and good mappings from, say pcc8 and nace
 - All files from NSI_datafiles.csv are covered, with all years as given by NSI_filename_varnames
 - All varnames from all NSI files, with proper format and domain (including classification, codebook etc)
 - Some key distributional characteristics of variables (mean, median, quintile) are matched, as are missing values
 - Firm and entry and exit rates, firm growth by age and size, are roughly met.
- Potential BR is done first. A universe of 'potential firms' by industry. Later, BR selected from existing firms in SBS and BR.
 - Consider firm and enterprise_group. Make sure all NSI datafiles are weel documented in this dimension
- Underlying 'firm' datasets
 - SBS/BS cobb douglas, deterministic with stochastic draws. Start with firm size and back out k, m, y from stochastic productivity and k/l moments
 - SBS/BS forward looking Hopenhayn with stochastic prod draw and shocks to prod and demand: endogenous exit.
 - SBS/BS Firms a la Aglio, Bartelsmanj with draws of A/g and η , ρ .
 - Firm dynamics with innovation, extensive choice of innovative activity (ICTEC, R&D)
 - Firms with extensive and intensive trade choices (ITGS, ITS, OFATS, IFATS)

break tasks into small progs (scripts) and tools (functions)

- Tools to read country 'metadata'. Not only datafiles, varnames, but also CompNet stuff on number of firms, prod distribution:
 - For a compnet country/industry pair: what is a good parametric prod distribution? (gamma 2,3). Target proper mean/median salers per worker.
 - distribution of number of firms per industry in a year
 - average entry/exit rates of firms
 - average entrant size
 - exit hazard by age and size
 - trade hazard by firm productivity
 - intangible hazard by firm productivity
 - credit constraint hazard by firm productivity

- For items missig for now, build this table with made up numbers, as default
- draw 'universe' of firmd identifiers and enterprise identifiers with concordance
 - use metadata from country to understand share of firms that are not 1-to-1 with group, and median number of firms in group with more than 1 firm.

names_select_Module

Back to main

mdi_mergeDTs()

```
# Merge BR and SBS by firmid and year, only selecting firms that are ever in the SBS
# DO NOT ALLOW Cartesian: firmid and year need to be the unique record descriptors; set to FALSE
#but do a left join of the selected br dataset (only firms that are ever in SBS), and the SBS
sbs_firms <- unique(sbs[,.(firmid)])
setkey(sbs_firms,firmid)
br_sbs <- br[sbs_firms, nomatch=0]
br_sbs <- sbs[br_sbs, on=.(firmid, year),nomatch=NA]</pre>
```

Back to main

NSI_initialise()

Back to main

mdi_export()

```
#| eval: true
#| echo: true
#Version : R 1.1
#Function to export a given data file in a specific format and add an entry to the output description file
#
#INPUTS
#output
            : a data.table object
           : (character) csv, RDS, txt, dta, xlsx, sas
#format
#output name : (character) name of the file
#output path : (character) specified directories
           : name of the file that describes the output
#desc file
#output_type : (character) either 'sum_stat' for summary statistics, 'reg_tab' for regression table or 'ot
#description : (string) allows further explanation of the output file
          : (booelan) set to TRUE if there are multiple levels of aggregation (child and parent nodes)
#hier
#hhfile
             : if used in mdi_aggregate_h: name of hierarchy file used for aggregation
#
#
#OUTPUT
#Objects saved in specified directories.
# Usage
# export db(
```

```
#
      format = "csv",
#
      output_name = paste0(CountryCode, "Coverage_Number_Firms", nm, MDIversion, sep="_"),
#
      output_path = dirOUTPUT,
#
      desc_file = Output_description.txt,
#
      output_type = 'sum_stat',
      description = 'Number of firms by datasource, industry (2 digit, 1 digit) and year',
#
#
     hier = TRUE,
#
     hhfile = indHier)
export_db <-
  function(output,format,output_name,output_path,desc_file,output_type="sum_stat",description=NULL,hier=FA
    # create entry in output description file
    if (output_type == "sum_stat") {
      # use attributes set in 'mdi_aggregate'
      #vars <- attr(output, "sumvars")</pre>
      #bygroups <- attr(output, "sorted")</pre>
      #newentry <-</pre>
      # paste(output_name,": Summary Statistics of",paste(vars, collapse = ''),"by",paste(bygroups, colla
               description, "\n", sep = " "
      #
      # )
     newentry <- paste0(output_name, ": Summary Statistics: ", description, "\n")</pre>
    } else if (output_type == "reg_tab") {
     newentry <- paste0(output_name, ": Regression table: ", description, "\n")
    } else if (output_type == "other") {
      newentry <- paste0(output_name, ": ", description, "\n")</pre>
    }
    write(newentry,append = TRUE,file = paste0(output_path, desc_file, ".txt"))
    # always check disclosure if output is type summary statistic
    if (output_type == "sum_stat") {
      output <- disclose(output, hier=hier, hhfile=hhfile)</pre>
    }
    # export file
    file <- paste0(output_path, output_name, ".", format)</pre>
    if (format == "csv") {
     fwrite(output, file)
    } else if (format == "RDS") {
      saveRDS(output, file)
    } else if (format == "txt") {
      #To A Tab Delimited Text File
```

#

output = datalist_num_firms[[nm]],

```
write.table(output, file, sep = "\t")
} else if (format == "dta") {
    write_dta(output, file)
} else if (format == "xlsx") {
    write.xlsx(output, file)
} else if (format == "sas") {
    write_sas(output, file)
}
```

Back to main