Opening the Brown Box: Production Responses to Environmental Regulation

Rebecca De Simone,¹ S. Lakshmi Naaraayanan,¹ Kunal Sachdeva²

¹London Business School ²Stephen M. Ross School of Business, University of Michigan

September 2024

Focus on Reducing Industrial Emissions

- Industrial emissions $\approx \frac{1}{3}$ of total in 2022 (25.8% in India)
- Emissions of other sectors projected to decline, industrial emissions to rise
- Challenges are technological and uncertainty how to design regulation

Units: Million metric tonnes of CO₂e. Source: Rhodium Group Climate Deck Database.

Emissions Forecasts by Industry, Global

CLIMATE ACTION

To decarbonize heavy industry, we must focus on industrial clusters

Jan 17, 2022

Focus on Reducing Industrial Emissions

- Industrial emissions $\approx \frac{1}{3}$ of total in 2022 (25.8% in India)
- Emissions of other sectors projected to decline, industrial emissions to rise
- Challenges are technological and uncertainty how to design regulation
- Robust evidence targeting firm emissions reduces them
 - $\rightarrow~$ Often by shifting emissions and selling polluting assets
 - → Mixed evidence on firm-level and aggregate effects
 - → No evidence on *within-firm* production responses

Units: Million metric tonnes of CO2e.

Source: Rhodium Group Climate Deck Database.

1.56

500

Emissions Forecasts by Industry, Global

This Paper

We combine:

- **Quasi-experiment:** Pollution index introduced in 2009 in India targeting place-based emissions; implementation based on pre-defined thresholds
 - \rightarrow Difference-in-discontinuity around treatment thresholds
 - $\rightarrow~$ Fixed effects: Firm and State $\times~$ industry $\times~$ Year
- Unique data: Inside the "brown box" of production processes and on firm outcomes
 - \rightarrow Product-level inputs and outputs
 - \rightarrow Abatement expenditures and action plans

Contributions:

- First to document within-firm production responses, both on the input and output side
- Evidence on which firms respond and which bear the burden
- Focus on industrial clusters and an emerging market

Results

- Improved pollution metrics at the cluster and product levels
 - ightarrow Multiple ways of measuring pollution suggest average cluster lowers emissions
 - \rightarrow Wide variation in improvement
- Treated firms green production, invest in abatement
 - $\rightarrow~$ Shift from high-emission and coal-dependent products
 - \rightarrow Reduce product-level energy intensity
 - \rightarrow Lower coal use and purchase electricity
 - \rightarrow Make abatement investments
- Clusters with credible regulators and public-private cost sharing respond more strongly and bear the brunt of costs
 - $\rightarrow\,$ Suggest importance of enforcement, coordinating emissions regulation across sectors, and public-private cost sharing
- Firm and regulator actions lower cost, but loss of aggregate dynamism

Contribution to the Literature

- Quantify impact of environmental regulation on emissions
 - → Command-and-control and cap-and-trade policies can both lower targeted emissions (Fowlie, 2010; Harrison et al., 2019; Bartram et al., 2022; Ivanov et al., 2023, ...)
 - → Evidence for shifting emissions (Aichele and Felbermayr, 2015; Schiller, 2018; Ben-David et al., 2021; Dai et al., 2021a and 2021b; Kim and Xu, 2021, ...)
 - ightarrow We focus on industrial clusters and use unique data and identification to study mechanisms
- Impact of emissions regulations on firm outcomes
 - → Mixed evidence on impact on productivity (Duflo et al., 2013; Kalmenovitz and Chen, 2021; Kala and Gechter, 2023, ...) and financial performance (Lenox and Eesley, 2009; Servaes and Tamayo, 2013; Fan et al., 2019; Naaraayanan et al., 2021, ...)
 - ightarrow We document firm-level and within-firm production response
- Broader literature on how firms impact the environment
 - → Highlighted importance of nature of ownership (Dimson et al., 2015, 2021; Krueger et al., 2020; Naaraayanan et al., 2021; Azar et al., 2021; Atta-Darkua et al., 2023; Berg et al., 2023; Ilhan et al., 2023, ...), disclosures (Jouvenot and Krueger, 2019; Bonetti et al., 2023; Tomar, 2023, ...), financial institutions (Kacperczyk and Peydro, 2022; De Haas, 2023; De Haas and Popov, 2023; Ivanov et al., 2023, ...), and self-commitment (Dahlmann et al., 2019; Comello et al., 2021; Freiberg et al., 2021; Duchin et al., 2022; Bolton and Kacperczyk, 2023, ...), trade (Barrows and Ollivier 2021)

INSTITUTIONAL BACKGROUND

Methodology and Assessment

2009 Comprehensive Environmental Pollution Index (CEPI) Methodology and Assessment

2009 Comprehensive Environmental Pollution Index (CEPI) Methodology and Assessment

Ambient Air Monitoring Station. Sujana Metals Unit-IV

Surface Water Sampling Point. Isukavagu

Ground Water Sample Point. Bollaram Village

Ground Water Sample Point. Krishnareddypet

Table	Table 5 CEPIs of various Industrial areas/ clusters for Air Environment													
No.	Industrial Cluster/Area	A1	A2	Α	B1	B2	B3	в	C1	C2	C3	С	D	AIR CEPI
1	Agra (Uttar Pradesh)	6.00	2.50	15.00	8.00	3.00	3.00	14.00	5.00	3.00	5.00	20.00	10.00	59.00
2	Ahmedabad (Gujarat)	6.00	5.00	30.00	7.75	3.00	3.00	13.75	3.00	3.00	0.00	9.00	10.00	62.75
3	Aligarh (Uttar Pradesh)	6.00	2.50	15.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	10.00	53.00
4	Angul Talcher (Orissa)	2.00	5.00	10.00	3.00	3.00	3.00	9.00	5.00	5.00	5.00	30.00	15.00	64.00
5	Ankleshwar (Gujarat)	5.00	5.00	25.00	8.00	6.00	6.00	20.00	3.00	4.00	5.00	17.00	10.00	72.00

Table	Table 7 CEPIs of various Industrial areas/ clusters for Land (Soil & Groundwater)													
No.	Industrial Cluster/Area	A1	A2	Α	B1	B2	B3	в	C1	C2	C3	С	D	LAND CEPI
1	Agra (Uttar Pradesh)	5.50	2.50	13.75	7.00	0.00	0.00	7.00	5.00	4.75	5.00	28.75	10.00	59.50
2	Ahmedabad (Gujarat)	3.00	5.00	15.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	58.00
3	Aligarh (Uttar Pradesh)	2.00	2.50	5.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	48.00

Table	Table 6 CEPIs of various Industrial areas/ clusters for Surface Water													
No.	Industrial Cluster/Area	A1	A2	Α	B1	B2	B3	в	C1	C2	C3	С	D	WATER CEPI
1	Agra (Uttar Pradesh)	5.50	2.50	13.75	7.00	0.00	3.00	10.00	5.00	5.00	5.00	30.00	10.00	63.75
2	Ahmedabad (Gujarat)	3.00	5.00	15.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	58.00
3	Aligarh (Uttar Pradesh)	2.00	2.50	5.00	8.00	3.00	3.00	14.00	3.00	3.00	5.00	14.00	15.00	48.00

Table	Table 8 The CEPI scores for industrial areas/ clusters descending order								
No.	Industrial Cluster/Area	AIR	WATER	LAND	CEPI				
1.	Ankleshwar (Gujarat)	72.00	72.75	75.75	88.50	Ac_Wc_Lc			
2.	Vapi (Gujarat)	74.00	74.50	72.00	88.09	Ac_Wc_Lc			
3.	Ghaziabad (Uttar Pradesh)	68.50	75.25	71.50	87.37	Ac_Wc_Lc			
4.	Chandrapur (Maharashtra)	70.75	67.50	66.50	83.88	Ac_Wc_Lc			

- Implementation
 - \rightarrow **Cutoff 1**: Clusters with CEPI \geq 60 subject to central monitoring at the national level, rather than the relatively weak local control, and quarterly emissions audits
 - \rightarrow **Cutoff 2**: Clusters with CEPI \geq 70 additionally must submit a remedial action plan for approval detailing emission reduction actions and timelines at the cluster and firm levels
- Failure to comply with the directives of the action plan:
 - $\rightarrow\,$ Lose their Environmental Clearance and Consent to Operate permits that allow firms to function within the formal economy
 - ightarrow Consent to Establish permits could not be issued to new operations

DATA AND EMPIRICAL STRATEGY

Datasets

Multiproduct firms in the manufacturing sector

- 2009 policy documents from the CPCB on pollution index (CEPI) construction
- Location of industrial clusters in 2009 Construction
- Cluster-level air emissions from satellite readings
 - ightarrow Emission Database for Global Atmospheric Research (industrial layer) Construction
 - \rightarrow Van Donkelaar PM_{2.5}
- Prowess and CapEx databases from Centre for Monitoring the Indian Economy
 - \rightarrow Financial statements
 - $\rightarrow~$ Product inputs and outputs mandated by Companies Act
 - → CAPX project announcements
- CO₂ conversion factors: Energy and Resources Institute and Central Electricity Authority
- Business registrar from the Ministry of Corporate Affairs
- 2001 Population Census

Descriptive Statistics: Industrial Multiproduct Firms in CEPI Clusters

	Obs	Mean	Std. dev.	Min.	Median	Max.
Assets (000 INR)	11,452	3,524	8,864	6.70	621	52,664
Sales (000 INR)	11,452	3,282	7,274	3.90	755	40,262
Leverage	10,307	0.27	0.20	0.00	0.25	1.13
Exporting Intensity	11,452	16.30	26.09	0.00	1.64	97.84
Ln(Revenue Productivity)	11,452	3.07	1.86	1.02	2.54	8.63
Number Product Lines	11,452	2.84	2.02	1.00	2.00	22.00
Profitability	11,452	0.11	0.08	-0.09	0.10	0.30
Investments/Assets	10,394	0.67	0.41	0.03	0.61	2.42
Raw Materials/Sales	11,451	0.58	0.22	0.03	0.60	1.01
Wages/Sales	11,451	0.05	0.05	0.00	0.04	0.30
Market-to-book	1,949	0.88	1.23	0.02	0.41	6.86

Firm-year panel (1,984 firms)

Firm-product-year panel (7,936 products)

	Obs	Mean	Std. dev.	Min.	Median	Max.
Ln(Product Sales)	30,143	4.44	2.78	-2.30	4.76	9.63
Ln(Unit Cost)	15,589	-4.97	3.86	-15.35	-3.85	3.44
Ln(Unit Price)	16,329	-4.92	3.87	-15.24	-3.73	3.37
Margin (%)	15,589	0.01	0.70	-5.67	0.14	0.64
Ln(Per Unit CO ₂ Emissions)	1,163	-2.35	2.80	-9.83	-1.85	2.42

Empirical Specification

Cluster, firm, and product level specifications

$$Y_{kijcst} = \beta_1 Post_t \times CEPI_c^{[60,70)} + \beta_2 Post_t \times CEPI_c^{[70,100]} + \beta_3 CEPI_c + \beta_4 Post_t + \gamma_i + \kappa_{jst} + \epsilon_{kijcst}$$

- *k,i, j, c, s,* and *t* represent a product, firm, industry, city, state, and year, respectively.
- $CEPI_c^{[60,70)}$ is one if the firm's industrial cluster has a **max** CEPI score \geq 60 and below 70, and zero otherwise.
- $CEPI_c^{[70,100]}$ is one if the firm's industrial cluster has a **max** CEPI score \geq 70, and zero otherwise.
- *Post*_t is one after the regulation was implemented in 2009, and zero otherwise.
- Fixed effects: Firm (γ_i) and State \times industry \times Year (κ_{jst})
- Cluster standard errors at the cluster-level
- Estimate within a bandwidth of 10 CEPI ranking
- β_1 : difference in discontinuity effect of crossing the treatment threshold at CEPI = 60

DiD + RD = DiRD

1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))

- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster

- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster
- 3. No jumps in firm and product characteristics around the threshold Balance: Firm Balance: Product

- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster
- 3. No jumps in firm and product characteristics around the threshold Balance: Firm Balance: Product

- 1. No manipulation of the running variable (Cattaneo, Jansson and Ma (2020))
- 2. No geographic clustering Balance: Cluster
- 3. No jumps in firm and product characteristics around the threshold Balance: Firm Balance: Product
- 4. Parallel trends Covariates

IMPACT ON CLUSTER-LEVEL EMISSIONS

Cluster-Level Satellite Readings: Industrial Emissions, All Pollutants

Cluster-Level Satellite Readings: Particulate Matter $< 2.5\mu$ Units: mg per month

Cluster-Level Satellite Readings

Dependent variable:	Pollution Measurement						
Pollutant(s):	All	$PM_{2.5}$	PM_{10}	NO_x			
$Post \times CEPI^{[60,70)}(\beta_1)$	-7.232**	-3.686*	-7.113	-10.898*			
	(3.597)	(2.054)	(5.653)	(6.536)			
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	-7.109**	-3.489*	-7.669	-10.169*			
	(3.225)	(1.813)	(4.748)	(5.937)			
2008 Dependent Variable Mean (Control)	23.09	16.86	38.95	13.45			
R^2	0.932	0.949	0.946	0.836			
Observations	54,648	18,216	18,216	18,216			
p -value $[\beta_1 - \beta_2 = 0]$	0.935	0.843	0.840	0.600			
DiD	-7.144	-3.545	-7.512	-10.375			
	[2.185]	[1.928]	[1.550]	[1.702]			

Notes. All models estimated within bandwidth of 10 CEPI; include Firm and State \times industry \times year FE.

• 10 $\mu g/m^3 \downarrow$ in exposure to $PM_{2.5} \Rightarrow 4-6\% \downarrow$ mortality risk (Pope et al. 2002; Hoek et al. 2013).

Cluster-Level Satellite Readings: Energy Sector Placebo

No effect on emissions of un-treated sector

Dependent variable:	Pollution Measurement							
Pollutant(s):	All	$PM_{2.5}$	PM_{10}	NO_x				
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.229	-0.112	-0.170	-0.405				
	(0.715)	(0.274)	(0.542)	(1.415)				
$Post \times CEPI^{[70,100]}(\beta_1)$	-0.169	-0.181	-0.184	-0.143				
	(0.755)	(0.304)	(0.549)	(1.520)				
2008 Dependent Variable Mean (Control)	8.18	1.78	3.34	19.43				
R^2	0.756	0.795	0.823	0.734				
Observations	29,808	9,936	9,936	9,936				
p -value $[\beta_1 - \beta_2 = 0]$	0.915	0.765	0.975	0.792				
DiD	-0.186	-0.161	-0.180	-0.217				
t-statistic	[0.266]	[0.579]	[0.357]	[0.153]				

Notes. All models estimated within bandwidth of 10 CEPI; include Firm and State \times industry \times year FE.

HOW DO FIRMS REDUCE EMISSIONS?

Observing how firms alter their inputs

- We use detailed product energy input data unique to India
 - $\rightarrow\,$ Annual expenditure and consumption (with units) of energy sources—coal, electricity, fuel, etc. by product line
- Mandated by an 1988 amendment to the Companies Act of 1956
 - ightarrow All firms report value of energy inputs at firm level
 - $\rightarrow~$ Largest firms have to report at product level and by fuel source
 - ightarrow ~ 10% of firms in our sample report in 2009

Product Energy Inputs

Firms reduce energy and coal use while electrifying production

Dependent variable	Ln(Value Energy Input)	$\mathbb{1}_{\operatorname{Coal}\operatorname{Use}}$	Proportion Purchased Electricity
$Post \times CEPI^{[60,70)}(\beta_1)$	-1.006***	-0.289*	0.196***
	(0.219)	(0.150)	(0.059)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	-0.818**	-0.301***	0.100**
	(0.294)	(0.092)	(0.036)
Ln(Production Quantity)	-0.208	0.033	-0.034
	(0.300)	(0.027)	(0.036)
2008 Dependent Variable Mean (Control) R^2 Observations p -value $[\beta_1 - \beta_2 = 0]$	8.906 M INR 0.795 901 0.549	0.17 0.496 565 0.905	0.46 0.786 901 0.124
DiD	-0.773	-0.308	0.151
t-statistic	[5.465]	[3.350]	[3.159]

Notes. All models include Firm and State \times industry \times year FE.

Evidence from annual reports

JK Lakshmi Cement Limited Annual Report, Fiscal Year 2011

During the year, the Company further improved its operating efficiencies. There was reduction in consumption of both power and fuel per unit of production. In addition, the Company improved usage of alternate fuel of bio-mass from 2% to 6%. These improvements have enabled the Company to also reduce the carbon footprint.

Product-Line Emissions

- We compute CO₂ emissions
 - → Multiply energy consumption by source-specific CO2 emissions factors and sum over energy types (Martin, 2012; Marin and Vona, 2019; Forslid et al., 2018; Barrows and Ollivier, 2021)
 - Electricity coded as coal
 - $\rightarrow\,$ Assumes energy source has a fixed carbon content irrespective of production or abatement technologies
Product-Level Emissions

Product emissions fall, consistent with cluster level evidence

Dependent variable:	Ln(Product CO ₂ Emissions)	Ln(Per Unit CO ₂ Emissions)
$Post \times CEPI^{[60,70)}(\beta_1)$	-1.083*** (0.283)	-0.885*** (0.306)
$Post \times CEPI^{[70,100]}\left(\beta_2\right)$	-0.944** (0.346)	-0.687** (0.270)
Ln(Production Quantity)	0.801** (0.334)	
2008 Dependent Variable Mean (Control) R^2 Observations p -value $[\beta_1 - \beta_2 = 0]$	162,229.58 0.893 901 0.691	2.79 0.774 901 0.579
DiD t-statistic	-1.414 [5.460]	-0.755 [3.709]

Notes. All models include Firm and State \times industry \times year FE.

Product Portfolio Weights

Relative shift away from dirtiest products

Dependent variable:	Product with Highest Coal Weight ₂₀₀₈	Product with Highest Emissions Weight ₂₀₀₈
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.309** (0.123)	-0.318** (0.118)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	-0.139 (0.114)	-0.184* (0.101)
2008 Dependent Variable Mean (Control) R^2 Observations p -value $[\beta_1 - \beta_2 = 0]$	0.78 0.775 705 0.123	0.65 0.758 705 0.215
DiD <i>t</i> -statistic	-0.181 [1.438]	-0.218 [1.981]

Notes. All models include Firm and State \times industry \times year FE.

Abatement Expenditures from Financial Statements

Abatement expenditures increase on extensive and intensive margins

Dependent variable:	1 Abatement	Abatement/Assets
Post ×CEPI ^{[60,70)} (β_1)	0.048	0.039*
v ,	(0.031)	(0.020)
Post $\times CEPI^{[70,100]}(\beta_2)$	0.077**	0.038**
·	(0.029)	(0.016)
2008 Dependent Variable Mean (Control)	0.06	0.01
R^2	0.725	0.753
Observations	10,752	10,752
p -value [$eta_1 - eta_2 = 0$]	0.029	0.933
DiD	0.072	0.038
<i>t</i> -statistic	[2.419]	[2.385]

Notes. All models include Firm and State \times industry \times year FE. Abatement expenditures include all funds used on pollution reduction in production.

Taking Stock of Results

- 1. Aggregate reduction in cluster-level emissions
 - \rightarrow Independent evidence shows decreased manufacturing emissions
 - ightarrow Persistent decline follows reform and increases gradually over following five years
 - $\rightarrow~$ No decrease in the energy sector, which was not treated
- 2. Reduction achieved through changes in input mix
 - $\rightarrow~$ Reduce the amount spent on energy and energy use per product
 - \rightarrow Increase electricity use
 - \rightarrow Shift from dirtiest fuels
 - ightarrow Shift away from coal-intensive and highest-emission products
 - \rightarrow Increase abatement expenditures

Delving even deeper:

Place-based regulation: Who complies?

Porter hypothesis: Is there a tradeoff between reducing emissions and firm productivity and profitability?

WHO COMPLIES?

Across-cluster heterogeneity

• Large variation in which clusters reduce emissions ex post

Comprehensive Environmental Pollution Index (CEPI)

Subsequent assessments

Comprehensive Environmental Pollution Index (CEPI)

Subsequent assessments

2. Across-cluster heterogeneity

- Large variation in which clusters reduce emissions ex post
- Ex-ante predictors of success include:
 - → Environmental regulation historical effectiveness index (Kattumuri and Lovo (2018))
 - \rightarrow Prior regulator action plans targeting city vehicle emissions (Greenstone and Hanna (2014))
 - → Regulator cost-sharing policies in action plans (2009 CEPI action plans) Cost sharing evidence
 - \rightarrow Proportion of small firms in city (firm registry)

Ex-ante Predictors of CEPI Improvement

FIRM AND AGGREGATE EFFECTS AND OTHER EXPLANATIONS

Firm Productivity and Profitability

Dependent variable:	Ln(Revenue Productivity)	EBITDA/ Sales	Product Margin
$Post \times CEPI^{[60,70)}(\beta_1)$	0.100	0.004	0.037
	(0.075)	(0.015)	(0.081)
$Post \times CEPI^{[70,100]} (\beta_2)$	0.127***	0.008	0.147***
	(0.039)	(0.014)	(0.054)
2008 Dependent Variable Mean (Control) Adjusted- R^2 Observations <i>p</i> -value $[\beta_1 - \beta_2 = 0]$ ATE	2.77 0.851 10,752 0.695 0.122 [3.238]	0.10 0.638 10,752 0.556 0.007 [0.496]	0.00 0.722 15,225 0.123 0.124 [2.731]

Notes. All models include Firm and State \times industry \times year FE.

Abatement technologies: Evidence From Action Plans

Air Pollution Control Measures

Scrubbers Electrostatic Precipitators

Cyclone Separators Venturi Scrubbers Dry Scrubbers Catalytic Converters Activated Carbon Adsorption Biofilters Water Polluting Control Measures Equalization tank Reaction tank Activated Carbon Filter Reverse Osmosis Secondary Settling Tank Primary Settling Tank Sludge Drying Bed Pressure Sand Filter Aeration Tank

Abatement technologies: Evidence From Action Plans

12. Summary of proposed action points

12.1 Short Term Action Points (up to 1 year, including continuous Activities)

Sr No	Action Points (including source & mitigation measures)	Responsible Stake Holders	Time limit	Cost	Remarks
WAT	TER				
	1.	Standard flow	meter at fir	al outlet of	ETP
1	$\begin{array}{l} \mbox{Identification of units} \\ \mbox{having effluent quantity} \\ \mbox{more than 25 } m^3/day. \end{array}$	GPCB, Concerned industries, CIA	Completed 30.06.2010		To control overflowing of CIA pipeline in future, it is necessary to control the discharge of excessive quantity of wastewater from the industrial units. Identification completed
	Industrial Association will issue the circular to their member to provide the Standard flow meter.	Concerned industries, CIA	31.12.2010	3.30 lacs	It is necessary to have metering system consisting of Standard Flow Meter (MFA) at the final outlet for industries having discharge more than 32 mi/day. Out of identified units, four industries have already provided the flow meter and rest has procured for installation during connection to the coaveyance system.

Industry-level actions

Abatement technologies: Evidence From Action Plans

Name	Technology adopted during last one year						
	Air	Water	Land	frame			
5. Tata Chemicals Ltd.	I. Dry Fog system and water sprinking System. (Coal Handling plant, coke Handling plant, Material Handling System, Wagon Trippler) 2. Fully covered Wagon Tippler and conveyor belts . (Coal unloading station). 3. Green Belt Development. Within factory premises. 4. Power plant with 16 nos of WHRBs. Along with the process.	I. Boiler Boiler Bow down water is mixed with quenching pond water and is used for Coke quenching purpose in 2 rower discharge water is mixed with quenching purpose in duenching purpose in duenching purpose in duenching purpose in duenching	1.Coke Swamp breeze is the only solid waster (non – hazardous in nature) generated generation of swamp breeze is approx 1000 tons per month which is being sold to third party completey 2. Tonal 15000 (approx) numbers of trees planted till date, nearly 2000 saplings have been planted	Already impleme nted			

Firm-level actions

Aggregate Effect and Other Explanations

- Product variety decreases
- Evidence consistent with lower firm entry
 - ightarrow All (formal) firms ightarrow
 - ightarrow Large firms ightarrow
- Leakage: No evidence firms shift production
 - ightarrow No effect on mergers and acquisitions ightarrow
 - ightarrow No effect on new plant announcements or closures ightarrow

Aggregate Effect and Other Explanations

- Product variety decreases
- Evidence consistent with lower firm entry
 - ightarrow All (formal) firms ightarrow
 - ightarrow Large firms ightarrow
- Leakage: No evidence firms shift production
 - ightarrow No effect on mergers and acquisitions ightarrow
 - ightarrow No effect on new plant announcements or closures ightarrow
 - ightarrow 2018: Firms forcibly moved out of New Delhi, to a location allocated by lottery.
 - Gechter and Kala (2023): 18.3 ↑ probability of firm exit, increasing in distance from initial location

Open the "Brown Box:" Production Responses to Emissions Regulation

We find:

- Firms lower emissions by (1) shifting away from high-emission energy sources, (2) electrifying production, and (3) investing in abatement
- Successful improvement a function of regulator effectiveness and government cost sharing
- Regulated clusters exhibit lower firm entry and product variety

Open the "Brown Box:" Production Responses to Emissions Regulation

Implications:

- Important for environmental regulation design when enforcement and monitoring are weak (Greenstone and Jack 2015, Duflo et al. 2018)
- Can cap geographically-tied emissions, but exacts economic cost
- Design of risk and cost-sharing between industry and government
- Need for coordinating decarbonization policies: industrial and electricity generation

Worldwide Focus on Reducing Industrial Emissions

Electrifying Industry

Briefing | The burning question

First electric cars. Next, electric factories?

They could be a major new way to slow global warming

IMAGE: RICARDO TOMÁS

Feb 15th 2024 | FORT COLLINS

ROCA GROUP

Roca Group successfully commissions the world's first electric tunnel kiln for the production of sanitary ceramics

28/11/2023

 The operation was carried out through a pioneering partnership with specialist kiln manufacturer

ABOUT PRODUCTS NOUSTRES SUSTAINABLITY CARGERS INVESTORS NUMBERA

BASF, SABIC AND LINDE START CONSTRUCTION OF THE WORLD'S FIRST LARGE-SCALE ELECTRICALLY HEATED STEAM CRACKER FURNACES

01/09/2022

Transitioning Industrial Clusters

NOLLO FORMONY

Developed PDF

This insight in sport (d) the first since revenues only perspectives of the insist of observes hold are a port of the first since in an indication of characters should be the down in that iso. The sinsatement, detective should a single an operative dock and indications, the single dock and a single dock and the haldweight, chare all developed comproblemitive strategies to single y and equitably haldweight persistence.

0000

And and Address of the local division of the

THANK YOU!

Cluster data construction

Extracting pollution data (1)

Extracting pollution data (2)

Cluster-Level Satellite Readings: Van Donkelaar PM_{2.5} Measure

Dependent variable:	Fine PM $_{2.5}~(\mu~{ m g}/m^3)$			
Radii of circle:	5 kilometers	500 meters		
$Post \times CEPI^{[70,100]} \left(\beta_1\right)$	-2.311*** (0.775)	-1.893** (0.743)		
$Post \times CEPI^{[60,70)}(\beta_2)$	-1.018 (0.756)	-0.560 (0.673)		
p -value $[\beta_1 + \beta_2 = 0]$ 2008 Dependent Variable Mean (Control) R^2 Observations	0.025 84.0 0.963 17,952	0.069 84.0 0.959 18,216		

Notes. All models estimated within bandwidth of 10 CEPI; include Cluster & State \times year-month FE.

• Reduction in PM₂.5 emissions of 4% relative to the pre-regulation control mean.

Cluster-Level Satellite Readings: Energy Sector Placebo

No effect on emissions of un-treated sector.

Dependent variable:	Pollution Measurement			
Pollutant(s):	All	$PM_{2.5}$	PM_{10}	NO_x
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.229	-0.112	-0.170	-0.405
	(0.715)	(0.274)	(0.542)	(1.415)
$Post \times CEPI^{[70,100]} (\beta_1)$	-0.169	-0.181	-0.184	-0.143
	(0.755)	(0.304)	(0.549)	(1.520)
2008 Dependent Variable Mean (Control)	8.18	1.78	3.34	19.43
R^2	0.756	0.795	0.823	0.734
Observations	29,808	9,936	9,936	9,936
p -value $[\beta_1 - \beta_2 = 0]$	0.915	0.765	0.975	0.792
DiD	-0.186	-0.161	-0.180	-0.217
<i>t</i> -statistic	[0.266]	[0.579]	[0.357]	[0.153]

Notes. All models estimated within bandwidth of 10 CEPI; include Firm and State \times industry \times year FE.

Descriptive Statistics: Firms

	Obs	Mean	Std. dev.	Min.	Median	Max.
Assets (000 INR)	11,452	3,524	8,864	6.70	621	52,664
Sales (000 INR)	11,452	3,282	7,274	3.90	755	40,262
Leverage	10,307	0.27	0.20	0.00	0.25	1.13
Exporting Intensity	11,452	16.30	26.09	0.00	1.64	97.84
Ln(Revenue Productivity)	11,452	3.07	1.86	1.02	2.54	8.63
Number Product Lines	11,452	2.84	2.02	1.00	2.00	22.00
Profitability	11,452	0.11	0.08	-0.09	0.10	0.30
Investments/Assets	10,394	0.67	0.41	0.03	0.61	2.42
Raw Materials/Sales	11,451	0.58	0.22	0.03	0.60	1.01
Wages/Sales	11,451	0.05	0.05	0.00	0.04	0.30
Market-to-book	1,949	0.88	1.23	0.02	0.41	6.86

Descriptive Statistics: Products

	Obs	Mean	Std. dev.	Min.	Median	Max.
Ln(Product Sales)	30,143	4.44	2.78	-2.30	4.76	9.63
Ln(Unit Cost)	15,589	-4.97	3.86	-15.35	-3.85	3.44
Ln(Unit Price)	16,329	-4.92	3.87	-15.24	-3.73	3.37
Margin (%)	15,589	0.01	0.70	-5.67	0.14	0.64
Ln(Per Unit CO ₂ Emissions)	1,163	-2.35	2.80	-9.83	-1.85	2.42

Balance: Firms

	All	Below	Above	Difference	RD Estimate	p-value
Assets (000 INR)	2,443	1,916	2,526	-610	-1,342	0.63
Sales (000 INR)	2,418	1,853	2,519	-665	-348	0.90
Leverage	0.27	0.29	0.27	0.02	-0.041	0.39
Exporting Intensity	0.25	0.23	0.25	-0.022	0.095	0.17
Ln(Revenue Productivity)	3.3	3.3	3.3	-0.0028	-0.18	0.72
Number of Products	2.9	2.9	2.9	-0.035	0.35	0.35
Profitability	0.11	0.11	0.12	-0.0064	0.023	0.16
Investments/Assets	0.70	0.77	0.69	0.083	-0.16	0.14
Raw Materials/Sales	0.57	0.60	0.57	0.037	0.0006	0.99
Wages/Sales	0.064	0.059	0.065	-0.0055	0.029	0.15
Market-to-book	1.1	0.95	1.1	-0.14	0.81	0.35

Balance: Products

	All	Below	Above	Difference	RD Estimate	<i>p</i> -value
Ln(Product Sales)	4.1	3.8	4.1	-0.30	-0.48	0.47
Ln(Unit Cost)	-5.0	-4.7	-5.0	0.33	-0.37	0.52
Ln(Unit Price)	-5.0	-4.7	-5.0	0.36	-0.26	0.59
Margin(%)	-2.3	-1.5	-2.5	1.00	-4.5	0.57
Ln(Unit CO2 Emissions)	-2.5	-2.2	-2.5	0.36	-0.85	0.27
Coal's Proportion of Inputs	0.65	0.66	0.65	0.01	0.35	0.09

Balance: Cluster

	All	Below	Above	Difference	Estimate	<i>p</i> -value
City roads, km, 1981	337.21	268.94	391.82	-122.89	-297.23	0.49
Log(population), 2001	13.33	13.02	13.57	-0.56	0.40	0.69
Population density (000 per Sq. km), 2001	8.63	9.39	7.99	1.39	-1.08	0.80
Average rent (per Sq. m.), 2008	953.70	907.78	990.43	-82.65	356.07	0.42
Proximity index, 2008	0.07	0.00	0.12	-0.11	-0.00	0.97
Nearest waterway (km), 2008	13.90	17.66	10.95	6.71	-16.69	0.182
Potential yields (tons/ha), 2008	1.44	1.49	1.41	0.08	0.11	0.12
Diameter from center (km), 2008	4.86	3.87	5.71	-1.84	2.22	0.51
Area footprint (Sq. km.), 2008	187.83	114.28	250.07	-135.79	184.25	0.49

Product Energy Inputs

Dependent variable	Ln(Value Energy Input)	¹ Coal Use	Proportion Electricity
$Post \times CEPI^{[70,100]} (\beta_1)$	-0.464	-0.476***	0.023
	(0.464)	(0.143)	(0.065)
$Post \times CEPI^{[60,70)}(\beta_2)$	-0.539	-0.341	0.173
	(0.338)	(0.208)	(0.119)
$Post \times CEPI^{[70,100]} \times High\text{-Polluting}(\beta_3)$	-0.600	0.371	0.157*
	(0.673)	(0.238)	(0.079)
$Post \times CEPI^{[60,70)} \times High\text{-}Polluting(\beta_4)$	-1.100	-0.327	0.002
	(0.712)	(0.321)	(0.147)
Ln(Production Quantity)	-0.200	0.027	-0.036
	(0.292)	(0.025)	(0.036)
2008 Dependent Variable Mean (Control)	8.906M	0.17	0.46

Product-Level Emissions

Dependent variable:	Ln(Product CO ₂	Ln(Per Unit CO ₂	Highest Coal
	Emissions)	Emissions)	Product Weight ₂₀₀₈
$Post \times CEPI^{[70,100]}(\beta_1)$	-0.515	-0.273	-0.007
	(0.526)	(0.646)	(0.102)
$Post \times CEPI^{[60,70)}(\beta_2)$	-0.591	-0.369	-0.060
	(0.391)	(0.469)	(0.090)
$Post \times CEPI^{[70,100]} \times High-Polluting(\beta_3)$	-0.750	-0.725	-0.175*
	(0.638)	(0.877)	(0.083)
$Post \times CEPI^{[60,70)} \times High\operatorname{-Polluting}(\beta_4)$	-1.112	-1.196	-0.531*
	(0.779)	(0.945)	(0.262)
Ln(Production Quantity)	0.811** (0.325)		
2008 Dependent Variable Mean (Control)	162,229.6	2.788	0.780

Factors of Production

Dependent variable:	Wage Bill	Raw Material Exp.	Investment
$Post \times CEPI^{[70,100]} \left(\beta_1\right)$	-0.002 (0.003)	-0.035 (0.027)	0.020 (0.024)
$Post \times CEPI^{[60,70)} (\beta_2)$	-0.005 (0.005)	-0.030 (0.029)	0.019 (0.031)
2008 Dependent Variable Mean (Control)	0.05	0.54	0.89
Firm & State \times industry FE	Yes	Yes	Yes
Bandwidth	Yes	Yes	Yes
R^2	0.806	0.793	0.826
Observations	10,752	10,752	9,643

Factors of Production

Dependent variable:	Wage Bill	Raw Material Exp.	Investment
$Post \times CEPI^{[70,100]}(\beta_1)$	-0.003	-0.039	0.018
	(0.003)	(0.027)	(0.024)
$Post \times CEPI^{[60,70)}(\beta_2)$	-0.004	-0.055*	0.028
	(0.007)	(0.029)	(0.032)
$Post \times CEPI^{[70,100]} \times High-Polluting(\beta_3)$	0.005**	0.011	0.009
	(0.002)	(0.011)	(0.017)
Post ×CEPI ^[60,70] × High-Polluting (β_4)	-0.003	0.087***	-0.027
	(0.008)	(0.031)	(0.032)
2008 Dependent Variable Mean (Control)	0.05	0.54	0.89
Firm & State \times industryFE	Yes	Yes	Yes
Bandwidth	Yes	Yes	Yes
R^2	0.806	0.794	0.826
Observations	10,752	10,752	9,643

Quantity Productivity

Dependent variable:	Log(Quantity-based Productivity)		
$Post \times CEPI^{[60,70)} (\beta_2)$	-0.287 (0.176)	-0.190 (0.302)	
$Post \times CEPI^{[60,70)} \times High\operatorname{-Polluting}(\beta_4)$		-0.189 (0.376)	
2008 Dependent Variable Mean (Control)	8.6	8.6	
Firm FE	Yes	Yes	
State $ imes$ industry $ imes$ year FE	Yes	Yes	
Bandwidth	Yes	Yes	
R^2	0.824	0.825	
Observations	1,898	1,898	
Robustness: Parallel trends

Probability of Filing Energy Inputs

No discontinuity in the probability of reporting energy inputs around the reform.

Dependent variable:	${}^{1\!\!1}$ File Energy Inputs		
Sample:	All	Regres	ssion
Post	-0.007*** (0.001)		
$Post \times CEPI^{[60,100]}$		-0.010 (0.010)	
Post ×CEPI ^[70,100]			-0.011 (0.010)
Post ×CEPI ^{[60,70)}			-0.008 (0.013)
Firm & State \times industry \times year FE Bandwidth R^2 Observations	Yes Yes 0.408 119,943	Yes Yes 0.417 32,299	Yes Yes 0.417 32,299

Probability of Filing Energy Inputs

No discontinuity in the probability of reporting energy inputs around the thresholds at baseline.

Cluster business dynamism decreases from lower firm entry

Prowess sample (large firms)

Dependent variable:	$\mathbbm{1}_{NewFirm}$	Log(No. of firms) <i>asinh</i> (No. of firms)		No. of firms (Poisson)
	(1)	(2)	(3)	(4)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.003 (0.017)	0.001 (0.016)	0.001 (0.021)	-0.289 (0.440)
2008 Dependent Variable Mean (Control) Adjusted- <i>R</i> ²	0.01 0.172	0.01 0.212	0.01 0.213	0.01
Observations	4,416	4,416	4,416	678

CIL output to fall short of target

Statesman News Service | New Delhi | December 23, 2010 5:31 pm

NEW DELHI, 23 DEC: Coal India today said its production would fall short of target by 16 million tons this financial year and might miss the expected output by 39 million tons in fiscal 2011-12 due to extension of lough environmental norms. "Comprehensive Environmental Pollution Index (CEPI) was supposed to be reviewed in October, but it has been extended till March. As a result, we clearly estimate an impact of 16 million tons reduction this year (on production)," Coal India chairman Mr Partha Bhattacharya told reporters here on the sidelines of a Parliamentary Standing Committee meeting. He added: "If it continues in 2012, then it will affect additional 39 million tons, which means it will take away the growth process (of Coal India)". Coal India has set a production target of 260.5 MT in 2010-11 and it has planned to produce 486.5 MT of coal in 2011-12.

Firm-level energy input

Dependent variable:	Ln(Value Firm Energy Input)
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.667*** (0.138)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.031 (0.095)
2008 Dependent Variable Mean (Control) Adjusted- R^2 Observations p -value $[\beta_1 - \beta_2 = 0]$	219.92 0.959 10,752 0.003

Cost of compliance: Evidence from action plans www

Sl. No.	Action Points (including source & mitigation measures)	Responsible Stake Holders	Time Limit	Cost	Remarks
1	Installation of CETP	Industry Association & Industry, WBPCB, MOEF as per CETP cost sharing principle of MOEF coordinated by SPCB	By June 2012	1.5 Crore	Necessary funding may be granted through WBPCB
2	Installation of AAAQM	Industry Association & Industry	By June 2012	02 Crore	Necessary funding may be granted through WBPCB
3	Development of proper drainage facility	Industry Association & Industry	By June 2012	02 Crore	Necessary funding may be granted through WBPCB. The possibility of accessing Infrastructural Funding Assistance from GOI will be explored.

Evidence from media Return

india .

CIL output to fall short of target

Statesman News Service | New Delhi | December 23, 2010 5:31 pm

NEW DELHI, 23 DEC: Coal India today said its production would fall short of target by 16 million tons this financial year and might miss the expected output by 39 million tons in fiscal 2011-12 due to extension of lough environmental norms. "Comprehensive Environmental Pollution Index (CEPI) was supposed to be reviewed in October, but it has been extended till March. As a result, we clearly estimate an impact of 16 million tons reduction this year (on production)," Coal India chairman Mr Partha Bhattacharya told reporters here on the sidelines of a Parliamentary Standing Committee meeting. He added: "If it continues in 2012, then it will affect additional 39 million tons, which means it will take away the growth process (of Coal India)". Coal India has set a production target of 260.5 MT in 2010-11 and it has planned to produce 486.5 MT of coal in 2011-12.

Lower Product Variety Return

Dependent variable:	Ln(Product-level Production	Ln(No. of Products)	${}^{1\!\!\!1}$ Add Product	$\mathbbm{1}$ Remove Product
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.110	0.013	-0.117***	0.003
	(0.182)	(0.078)	(0.041)	(0.036)
$Post \times CEPI^{[70,100]} \left(\beta_2\right)$	0.030	0.007	-0.057*	0.023
	(0.130)	(0.072)	(0.034)	(0.030)
2008 Dependent Variable Mean (Control)	29,784	2.71	0.27	0.17
R^2	0.582	0.746	0.263	0.242
Observations	15,521	10,752	10,752	10,752
p -value $[\beta_1 - \beta_2 = 0]$	0.429	0.904	0.094	0.314
ATE	0.007	0.008	-0.068	0.019
t-statistic	[0.063]	[0.118]	[2.138]	[0.621]

Lower Product Variety Return

Dependent variable:	Ln(Product-level Production)	Ln(No. of Products)	$\mathbbm{1}$ Add Product	$\mathbbm{1}_{Remove}$ Product
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.331	0.003	-0.141***	-0.028
	(0.235)	(0.076)	(0.041)	(0.042)
$Post \times CEPI^{[70,100]}\left(\beta_2\right)$	-0.008	0.015	-0.051	0.013
	(0.137)	(0.073)	(0.034)	(0.032)
$Post \times CEPI^{[60,70)} \times High\text{-Polluting}(\beta_3)$	0.621***	0.025	0.073	0.107**
	(0.222)	(0.083)	(0.052)	(0.050)
Post × CEPI ^[70,100] × High-Polluting (β_4)	0.090	-0.036*	-0.030	0.036*
	(0.105)	(0.019)	(0.025)	(0.019)

Cluster business dynamism decreases from lower firm entry Return Full firm registry

Dependent variable:	$\mathbbm{1}_{\operatorname{New}\operatorname{Firm}}$	Log(No. of firms)) $asinh(No. of firms)$	No. of firms (Poisson)
$Post \times CEP^{[60,70)}(\beta_1)$	-0.009	-0.011	-0.014	-0.105
	(0.011)	(0.010)	(0.013)	(0.138)
2008 Dependent Variable Mean (Control) R ² Observations	0.08 0.449 33,534	0.20 0.570 33,534	0.20 0.570 33,534	0.20 19,958
ATE	-0.013	-0.010	-0.013	-0.169
<i>t</i> -statistic	[1.360]	[1.206]	[1.189]	[1.582]

No evidence firms shift production location remo

No effect on mergers and acquisitions

Dependent variable:	1 _{Target}	$\mathbbm{1}_{Acquired}$	
$Post \times CEPI^{[60,70)}(\beta_1)$	0.018 (0.012)	-0.000 (0.008)	
	(0.009)	(0.007)	
2008 Dependent Variable Mean (Control)	0.00	0.00	
Adjusted-R ²	0.193	0.148	
Observations	10,752	10,752	
ATE	0.007	0.003	
t-statistic	[0.740]	[0.534]	

No evidence firms shift production location remo

No affect on new plant announcements or plant abandonments

Dependent variable:	1 New Plant	1Abandon Plant
$Post \times CEPI^{[60,70)}(\beta_1)$	0.008 (0.013)	0.003 (0.011)
2008 Dependent Variable Mean (Control) R^2	0.00 0.350	0.00 0.284
Observations	10,752	10,752
ATE <i>t</i> -statistic	-0.007 [0.590]	-0.002 [0.238]

Production Return

Dependent variable:	Ln(Product-level Production	Ln(No. of Products)	${}^{l\!\!1}$ Add Product	${}^{1\!\!1}$ Remove Product
$Post \times CEPI^{[60,70)}(\beta_1)$	-0.110	0.013	-0.117***	0.003
	(0.182)	(0.078)	(0.041)	(0.036)
$Post \times CEPI^{[70,100]}(\beta_2)$	0.030	0.007	-0.057*	0.023
	(0.130)	(0.072)	(0.034)	(0.030)
2008 Dependent Variable Mean (Control)	29,784	2.71	0.27	0.17
R^2	0.582	0.746	0.263	0.242
Observations	15,521	10,752	10,752	10,752
p -value $[\beta_1 - \beta_2 = 0]$	0.429	0.904	0.094	0.314
ATE	0.007	0.008	-0.068	0.019
<i>t</i> -statistic	[0.063]	[0.118]	[2.138]	[0.621]

Framework Return

Assume (following literature):

- Cobb-Douglas production function $Q = A E^{\alpha_E} K^{\alpha_K} M^{\alpha_M} L^{\alpha_L}$
- Main effect of regulation is to increase the price of energy services E and firms take factor costs as given

Then:

- Baumol and Oates (1988): Unchanged TFPR
- Greenstone et al. (2012): Assume to comply firms divert an exogenous share φ of their inputs (e.g., L) to uses that don't contribute to observed output: **Lower TFPR**

$$Q* = AE^{\alpha_E} K^{\alpha_K} M^{\alpha_M} (\varphi L)^{\alpha_L} = \varphi^{\alpha_L} Q, \varphi < 1$$

- Colmer et al. (2024): Assume firms can pay fixed cost κ to switch to a more productive production technology that uses less energy: **Higher TFPR if PDV of switching** > κ
 - → Assume new tech is less energy intensive, more capital-intensive, and has higher TFP: $\alpha_E^* = \alpha_E - \zeta_{\alpha}$; $\alpha_K^* = \alpha_K + \zeta_{\alpha}$; $A^* = A + \zeta_A$
 - $\,\rightarrow\,$ Compliers: switching cost was higher than gain before the regulation raised energy costs

Merging the Data Return

- Challenge 1: Firm location proxy as headquartered city
 - ightarrow To the extent treated firms operate in control clusters also (or vice versa), attenuates effects
- Challenge 2: Firm-city to cluster match
 - $\rightarrow~$ There can be more than one cluster in a city
 - ightarrow Assign treatment using the maximum cluster CEPI score