

$CompNet \ {\rm The \ Competitiveness \ Research \ Network}$

Energy transition a CompNet/MDI-based Assessment

Lead: Marcelo Piemonte Ribeiro (IHEID/CompNet) AT NPB (OeNB): Sellner, R., Reinstaller, A OECD: Ozturk, F., Costa, H., Unsal, F. CompNet alumni: Mola, A., Bighelli, T.

This project has received funding from the European Commission; Directorate-general for Structural Reform Support under grant agreement No 101101853.

November 19th 2024

Energy research:

- 1. Energy prices' role in energy use (FINPRO4)
- 2. Price signaling (joint with OECD)
- 3. Energy use by product (Mola, A., Bighelli, T.)
- Next steps using MDI

- By mid-century, electricity demand 75% higher than today (IEA 2022)
- Net zero emissions (NZE) targets require ~3x more clean energy and energy efficiency (IEA 2023)
- NZE 2050 demands EU fossil fuel cut from 73% to 20%; current policies only reach ~60% (ECB 2024)

- Keeping output constant, firms can reduce energy use via
- 1. price signals
 - with low impact on employment/competitiveness (Marin & Vona, 2021 EER: 2019 JEEM)
 - depending on their pass-through/market power (Ganapati et al., 2020 AER)
- 2. efficiency/innovation (technical change literature) (Acemoglu et al. 2012; 16 AER)
- Challenges: asset turnover, externality, credit constraints, rebound effects, behavior failures → underinvestment

- Micro data infrastructure (MDI), created under the EU Technical Support Instrument project*
- Main datasets: ENER, PRODCOM, SBS, and BS
- Main analysis is focused on France and Austria (partially), 2000-2020.
 - To be expanded to Portugal, and partially to Slovenia and Finland

* The MDI received funding from the H2020 project grant Microprod, 2019-222, and the EU TSI project, European Commission, Directorate-general for Structural Reform Support under grant agreement No. 101101853 and No. 101140673

MDI energy-related available data

• Countries available: FR, PT, SI, AT, FI

- MDI BS: Energy input (FI, PT, SI)
 - Sub-item of intermediate inputs; <u>all expenses of the firm for energy covering all sorts of fuels</u>, <u>heat or electricity (e.g. solid fuels like coal or wood, liquid fuels like gasoline, gas fuels like natural gas)</u>.
- MDI ENER: Energy total expenditure, total consumption → prices (FR, PT, AT)
 - natural gas, light fuel oil, district heating, steam, liquid petroleum gas, coal and coal products, other petroleum products, other gas products, renewable energy, other nonrenewable

- Green transition:
- 2 markets
 - Make power generation plants greener (Fabra, N., Imelda, 2023 AER)

CompNet The Competitiveness Research Network

- Green transition:
- 2 markets
 - 1. Make power generation plants greener (Fabra, N., Imelda, 2023 AER)
 - 2. Firms can reduce energy use via
 - i) less output
 - ii) efficiency
 - iii) switch to clean sources ← prices

Wood prod. Vehicles Tobacco/Food/Beverage Textiles/Garment/Leather Paper/Print/record media Metals Metal/Equip./Machinery* Furniture/Rubber/plastic Civil engin./construct. Chemicals/Pharma Wood prod. Vehicles Tobacco/Food/Beverage Textiles/Garment/Leather Paper/Print/record media Metals Metal/Equip./Machinery* Furniture/Rubber/plastic Civil engin./construct. Chemicals/Pharma 0% 25% 50% 75% 100% Natural gas Oil products Other Electricity

Energy share by industry

*Fabricated metal/Computer & Electrical equip./Machinery

표

- Green transition:
 - Few firms
 consume most
 of the countries'
 energy:
 - They are larger
 - Pay lower prices (quantity discount)

Share firms representing 75%/90% country total energy use

- 75% of total consumption - 90% of total consumption - AT ---- FR

Energy prices decomposition:

- Decompose industry price index (EPI) change into price, structure, and interaction
- Also tested LDMI** which decomposes index into price and structure

$$\Delta EPI_{S} = \sum_{i} p_{s,t-h,i} \times \Delta w_{s,t,i} + \sum_{i} \Delta p_{s,t,i} \times w_{s,t-h,i} + \sum_{i} \Delta p_{s,t,i} \times \Delta w_{s,t,i}$$

- EPI: industry price index
- *i: energy source*
- s: industry
- w: share of i in total quantity of energy used in industry s at time t

Energy price decomposition (2013-2019)

- At what extent energy prices reduce energy consumption?
 - $EnerQ_{ist} = \beta p_{ist} + \theta_i + \sigma_{st} + \varepsilon_{ist}$
 - σ_{st} : elasticity identified on differences to the sector-average price shock
 - *p*_{ist}: endogenous due to firms' bargaining power (e.g., quantity discount)

• Shift-share IV (Fontagne et al., 2024):
$$p_{ist}^{IV} = \left[\frac{p_{i,s,to}}{\bar{p}_{s,to}}\right] \times \bar{p}_{st}$$

» Relative firm-sector energy price at *t0* shift to sectoral prices at *t*

 Energy prices (more idiosyncratic than structural) elasticity of energy demand should

- matter to big consumers and especially
- be particularly important to dirty energy
- At what extent energy prices reduce energy consumption?

• EnerQ_{ist} =
$$\beta p_{ist} + \theta_i + \sigma_{st} + \varepsilon_{ist}$$

- σ_{st} : elasticity identified on differences to the sector-average price shock
- *p*_{ist}: endogenous due to firms' bargaining power (e.g., quantity discount)
 - Shift-share IV (Fontagne et al., 2023 WP): $p_{ist}^{IV} = \left[\frac{p_{i,s,t0}}{\bar{p}_{s,t0}}\right] \times \bar{p}_{st}$

» Relative firm-sector energy price at *t0* shift to sectoral prices at *t*

Price elasticity of energy demand

DV: Energy (i) demand (log)

	Energy	Clean Energy	Dirty Energy	Natgas
(log Energy Price)	-1.15***	-0.96***	-1.03***	-1.25***
	(0.03)	(0.03)	(0.05)	(0.07)
Obs.	151849	151753	128901	92772
R2 Adj.	0.96	0.95	0.93	0.94
FE: firmid & Sec-Year	x	х	x	x
(lag-log Energy Price)	-0.30***	-0.31***	-0.35***	-0.48***
	(0.02)	(0.02)	(0.04)	(0.08)
Obs.	122144	122072	101797	72814
R2 Adj.	0.96	0.95	0.93	0.95
FE: firmid & Sec-Year	x	x	x	x
(Energy Price IV)	-0.22**	-0.17**	-0.20*	-1.19***
	(0.08)	(0.07)	(0.13)	(0.35)
Obs.	150848	150679	120461	79436
R2 Adj.	0.94	0.93	0.91	0.93
1st stage	0.55^{***}	0.63^{***}	0.44^{***}	0.29^{***}
FE: firmid & year	x	x	x	x

Robust standard errors, clustered at firm level.

Regressions weighted by employment at t0.

*** p< 0.01, ** p< 0.05, * p< 0.1

- Important disparity controlling for price endogeneity:
 - $\uparrow 10\% \rightarrow \sim \downarrow 2\%$
 - Low for dirty energy
- Higher natural gas price elasticity (↑10% → ↓12%)
 - Robustness includes 3 lags as control: effect concentrated at *t*

- Estimates relatively stable over time
 - Elasticities evolved over time (e.g., dirty vs. energy), but rather stable

- Larger shocks are important to clean energy and natural gas:
 - High negative impact on clean energy consumption (↑10% → ↓40%)
 - Positive impact on natural gas →
 - Contemporaneous inelasticity

Non-linear energy price demand elasticity

Plotted coefficients statistical significants at 1%

- Price signaling key to speed green transition (André et al.2023)
- Energy prices react to:
 - External shocks (e.g., Ukrainian war)
 - Carbon taxes:
 - To what extent? for which type of firms?

5.0 - 0.35 4.5 - 0.30 -- 0.25 4.0 Overall Index 3.2 0 - 0.20 EPS - 0.15 ۲o۲ - 0.10 2.5 - 0.05 - 0.00 2.0 - -0.05 2000 2010 2015 2005 2020

OECD Environmental Policy Stringency (EPS) Index Level and Year-Over-Year Changes

Governments are increasingly implementing policies to drive the green transition

Year

2) Price signaling; energy mix (joint with OECD)

- Price signaling \rightarrow firms' energy mix

• CES production function: output function of low (L) and high(H) carbon energy inputs

•
$$Y = \left(\alpha q_L^{\frac{\sigma-1}{\sigma}} + (1-\alpha) q_H^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \rightarrow \text{Max } \pi: \max PY - (P_L q_L + P_H q_H)$$

- α: input share
- σ : elasticity substitution between q_L and q_H
- P: output price
- $P_Lq_L + P_Hq_H$: firms' total energy expenditure
- Optimal fuel mix is a function of energy prices:

• $\frac{q_L}{q_H} = \left(\frac{P_H}{P_L}\frac{\alpha}{1-\alpha}\right)^{\sigma} \rightarrow To increase the low-carbon fuel share <math>\left(\frac{q_L}{q_H}\right) \rightarrow high-carbon fuels needs to become relatively more expensive$

- Carbon taxes : $p_H = (1 + \tau_H) p_H$
- Subsidies: $p_L = (1 \tau_L) p_L$

18

2) Price signaling; carbon tax & subsidies (joint with OECD)

- Price signaling \rightarrow firms' energy mix

• CES production function: output function of low (L) and high(H) carbon energy inputs

$$Y = \left(\alpha q_L^{\frac{\sigma-1}{\sigma}} + (1-\alpha) q_H^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \rightarrow \text{Max } \pi: \max PY - (P_L q_L + P_H q_H)$$

α: input share

.

- σ : elasticity substitution between q_L and q_H
- P: output price
- $P_Lq_L + P_Hq_H$: firms' total energy expenditure
- FOC: Optimal fuel mix is a function of energy prices:

•
$$\frac{q_L}{q_H} = \left(\frac{P_H}{P_L}\frac{\alpha}{1-\alpha}\right)^{\sigma} \rightarrow To increase the low-carbon fuel share $\left(\frac{q_L}{q_H}\right) \rightarrow high-carbon fuels needs to become relatively more expensive$$$

- Carbon taxes : $p_H = (1 + \tau_H) p_H$
- Subsidies: $p_L = (1 \tau_L) p_L$

CompNet The Competitiveness Research Network

2) Price signaling; policies (joint with OECD)

 Higher EPS should correlate with higher relative cost of H to L carbon fuels:

•
$$\frac{P_{isct}^{H}}{P_{isct}^{L}} = \alpha_{i} + \beta EPS_{ct} + \gamma X'_{isct-1} + \varepsilon_{isct}$$

- i: firm
- s: sector
- c: country
- t: year
- To reduce endogeneity and introduce firm variation:
 - multiply EPS index by firms' initial ratio of dirty to clean quantities: $\frac{q_{iscto}^{H}}{q_{iscto}^{L}}$
 - Initial results at firm and sectoral level indicate a positive, but low, correlation between EPS and the ratio, especially for EPS component of clean energy subsidy

3) Energy use by product (with Mola, A. & Bighelli, T.)

- At the product-level (PRODCOM), how energy price shocks alter firms' production process?
 - Do they keep producing the same products, but more efficiently (i.e., using less energy per product)?
 - Or do they change their product composition/mix?
- Lack of evidence using firm-product-level data

3) Energy use by product: new database (with Mola, A. & Bighelli, T.)

- To respond these questions, we build a new database:
 - Energy-use by product
 - No consensus on how to link inputs usage to a specific product line
 - Proposal:
 - Empirical approach
 - Production function estimation

Focus on single-product firms: total energy consumption adjusted by VA and by n° of produced goods.

3) Energy use by product: single-product (with Mola, A. & Bighelli, T.)

- To respond these questions, we build a new database:
 - Energy-use by product
 - Proposal:
 - Empirical approach:
 - 1st: focus single-product firms

Figure 1: Energy use/VA by product (avg): industry mean

Focus on single-product firms: total energy consumption adjusted by VA and by n° of produced goods. 1541 products

3) Energy use by product: single-product (with Mola, A. & Bighelli, T.)

- To respond these questions, we build a new database:
 - Energy-use by product
 - Proposal:
 - Empirical approach:
 - 1st: focus single-product firms
 - » Taking the distribution of each product:
 - Larger and more energyintensive at bottom percentiles
 - Have higher energy costs
 over their total costs

Characteristics firms along distribution⁵

	Cost	Intensity	Employees	
P01	0.10	0.52	67.74	
P05	0.05	0.26	75.27	
P10	0.05	0.23	72.76	
P25	0.04	0.21	69.56	
P50	0.04	0.21	62.59	
P75	0.03	0.14	52.50	
P90	0.03	0.12	44.16	
P95	0.04	0.11	39.25	
P99	0.02	0.15	37.60	

Mean energy costs, intensity, & n° employees of firms at each percentile

3) Energy use by product: algorithm (with Mola, A. & Bighelli, T.)

- To respond these questions, we build a new database:

- Energy-use by product
 - Empirical approach:
 - 1st: focus single-product firms
 - 2nd: expand to multiple-product:
 - » Single-product energy-use distribution
 - » Expand to double-product firms matching by firm characteristics (e.g. size)
 - E.g., 2 prod firm: prod A match prod B from single-prod dist. match
 - » Expand to three & four product firms (80% production coverage)
 - 3rd: product energy usage based on product revenue
 - Placebo: fuzzy match

	Algorithm	Fuzzy match	Revenue-based measure
Algorithm	1.000		
Fuzzy match	0.233	1.000	
Revenue-based measure	0.736	0.266	1.000

Table 1: Energy-use by product methods: correlation matrix

25

3) Energy use by product: prod. function (with Mola, A. & Bighelli, T.)

- To respond these questions, we build a new database:
 - Energy-use by product
 - Empirical approach
 - Production function estimation approach: (De Locker et al., 2016) framework
 - Estimate the production function parameters for the single-product firms
 - Use those parameters to retrieve inputs allocation across product
 - » Assume: production function parameters the same for singleproduct firms and single production lines in multi-product firms

Next steps using MDI

- Keeping output constant, firms could reduce energy demand by switching to clean sources via
 - Prices (idiosyncratic) EPS + supply (temporary vs permanent) shocks (not tested)
 - Price elasticity clean and dirty (oil essentially) energy similar
 - Natural gas price elasticity higher
 - Prices \rightarrow \uparrow Efficiency vs rebound effect (not tested)
- Mechanisms & heterogeneity (TBD)
 - How effective is price signaling to big consumers? Consider market power (energy price pass-through)

- Energy research:
 - 1. Their role in energy use:
 - Evaluate estimates during the EU energy crisis (2022)
 - Expand findings to technical change literature
 - Include energy efficiency component Stochastic Frontier analysis
 - 2. Price signaling (joint with OECD)
 - Evaluate policies (FR and PT identified)
 - 3. Energy use by product (Mola, A., Bighelli, T.)
 - Pursue 2nd approach and test energy shocks

Thank you!

- Dussaux, D., 2020. "The joint effects of energy prices and carbon taxes on environmental and economic performance: Evidence from the French manufacturing sector," OECD Environment Working Papers 154, OECD Publishing.
- Linn, J., 2008, "Energy prices and the adoption of energy-saving technology", The Economic Journal, Oxford University Press Oxford, UK
- Gillingham, K. et al., 2018. Advances in Evaluating Energy Efficiency Policies and Programs, Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 511-532.
- Gillingham, K. et al., 2009. Energy Efficiency Economics and Policy, Annual Review of Resource Economics, 1, (1), 597-620.
- Fontagné, L. et al., 2023. The Many Channels of Firm's Adjustment to Energy Shocks: Evidence from France, Working Papers DT/2023/05, DIAL (Développement, Institutions et Mondialisation).
- IEA (2022), World Energy Outlook 2022, IEA, Paris https://www.iea.org/reports/world-energy-outlook-2022, License: CC BY 4.0 (report); CC BY NC SA 4.0 (Annex A)
- Imbruno, M., Ketterer, T.D., 2018. Energy efficiency gains from importing intermediate inputs: firm-level evidence from indonesia. J Dev Econ 135, 117–141.
- Ling-Yun, H., Geng, H., 2021, How can export improve firms' energy efficiency? The role of innovation investment. Structural Change and Economic Dynamics 59, 90-97.
- Marin, G., Vona F., 2021. The Impact of Energy Prices on Employment and Environmental Performance: Evidence from French Manufacturing Establishments, European Economic Review, vol 135, 103739.

- Abeberese, Ama Baafra; ,Electricity cost and firm performance: Evidence from India,Review of Economics and Statistics,99,5,839-852,2017,"MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info ..."
- Barrows, Geoffrey; Ollivier, Hélène; ,Cleaner firms or cleaner products? How product mix shapes emission intensity from manufacturing,Journal of Environmental Economics and Management,88,,134-158,2018,Elsevier
- Batrakova, Svetlana; ,Flip side of the pollution haven: do export destinations matter?,,,,,2011,UCD Centre for Economic Research Working Paper Series
- Blyde, Juan S; Ramirez, Mayra A; ,Exporting and environmental performance: Where you export matters,The Journal of International Trade & Economic Development,31,5,672-691,2022,Taylor & Francis
- Dardati, Evangelina; Saygili, Meryem; ,Are exporters cleaner? Another look at the trade-environment nexus,Energy Economics,95,,105097,2021,Elsevier
- Forslid, Rikard; Okubo, Toshihiro; Ulltveit-Moe, Karen Helene; ,"Why are firms that export cleaner? International trade, abatement and environmental emissions", Journal of Environmental Economics and Management, 91,, 166-183, 2018, Elsevier
- Girma, Sourafel; Hanley, Aoife; ,How green are exporters?,Scottish Journal of Political Economy,62,3,291-309,2015,Wiley Online Library
- Goldar, Bishwanath; Goldar, Amrita; ,Impact of export intensity on energy intensity in manufacturing plants: Evidence from India,The Journal of International Trade & Economic Development,32,4,639-664,2023,Taylor & Francis
- Kwon, Ohyun; Zhao, Hao; Zhao, Min Qiang; ,Global firms and emissions: Investigating the dual channels of emissions abatement, Journal of Environmental Economics and Management, 118, 102772, 2023, Elsevier www.comp-net.org

- LaPlue, Lawrence D; ,The environmental effects of trade within and across sectors,Journal of Environmental Economics and Management,94,,118-139,2019,Elsevier
- Richter, Philipp M; Schiersch, Alexander; ,CO2 emission intensity and exporting: Evidence from firm-level data,European Economic Review,98,,373-391,2017,Elsevier
- Roy, Jayjit; Yasar, Mahmut; ,Energy efficiency and exporting: Evidence from firm-level data,Energy Economics,52,,127-135,2015,Elsevier
- Tran, Trang My; ,Environmental benefit gain from exporting: Evidence from Vietnam,The World Economy,45,4,1081-1111,2022,Wiley Online Library
- He, Ling-Yun; Huang, Geng; ,How can export improve firms' energy efficiency? The role of innovation investment,Structural Change and Economic Dynamics,59,,90-97,2021,Elsevier
- Zhou, Kexuan; Yu, Linhui; Jiang, Xinlin; Kumar, Sanjay; ,Trade policy uncertainty and pollution emissions of export enterprises—The case of China-ASEAN free trade area,Review of International Economics,31,5,1719-1750,2023,Wiley Online Library
- Cole, Matthew A; Elliott, Robert JR; Occhiali, Giovanni; Strobl, Eric; ,Power outages and firm performance in Sub-Saharan Africa,Journal of Development Economics,134,,150-159,2018,Elsevier
- Liski, Matti; Vehviläinen, livo; ,Gone with the wind? An empirical analysis of the equilibrium impact of renewable energy,Journal of the Association of Environmental and Resource Economists,7,5,873-900,2020,"The University of Chicago Press Chicago, IL"
- Aldy, Joseph E; Pizer, William A; ,The competitiveness impacts of climate change mitigation policies, Journal of the Association of Environmental and Resource Economists, 2, 4, 565-595, 2015, "University of Chicago Press Chicago, IL" WWW.comp-net.org

- Amann, Juergen; Cantore, Nicola; Cali, Massimiliano; Todorov, Valentin; Cheng, Charles Fang Chin; ,Switching it up: The effect of energy price reforms in Oman,World Development,142,,105252,2021,Elsevier
- Deschenes, Olivier; ,Climate policy and labor markets,The design and implementation of US climate policy,,,37-49,2011,University of Chicago Press
- Hille, Erik; Möbius, Patrick; ,Do energy prices affect employment? Decomposed international evidence,Journal of Environmental Economics and Management,96,,1-21,2019,Elsevier
- Jo, Ara; ,Substitution between Clean and Dirty Energy with Directed Technical Change,Available at SSRN 4211251,,,,2022,
- Marin, Giovanni; Vona, Francesco; ,Climate policies and skill-biased employment dynamics: Evidence from EU countries,Journal of Environmental Economics and Management,98,,102253,2019,Elsevier
- Sato, Misato; Singer, Gregor; Dussaux, Damien; Lovo, Stefania; ,International and sectoral variation in industrial energy prices 1995–2015,Energy Economics,78,,235-258,2019,Elsevier
- Costantini, V., & Mazzanti, M. (2012). On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports. Research policy, 41(1), 132-153.
- Rentschler, J., & Kornejew, M. (2017). Energy price variation and competitiveness: Firm level evidence from Indonesia. In Fossil Fuel Subsidy Reforms (pp. 75-106). Routledge.
- Ganapati, S., Shapiro, J. S., & Walker, R. (2020). Energy cost pass-through in US manufacturing: Estimates and implications for carbon taxes. American Economic Journal: Applied Economics, 12(2), 303-342.
- Filippini, M., & Hunt, L. C. (2015). Measurement of energy efficiency based on economic foundations. Energy

- Noailly, J., & Smeets, R. (2022). Financing energy innovation: Internal finance and the direction of technical change. Environmental and Resource Economics, 83(1), 145-169.
- Batrakova, S., & Davies, R. B. (2012). Is there an environmental benefit to being an exporter? Evidence from firmlevel data. Review of World Economics, 148, 449-474.
- Gutiérrez, E., & Teshima, K. (2018). Abatement expenditures, technology choice, and environmental performance: Evidence from firm responses to import competition in Mexico. Journal of Development Economics, 133, 264-274.
- Fisher-Vanden, K., Mansur, E. T., & Wang, Q. J. (2015). Electricity shortages and firm productivity: evidence from China's industrial firms. Journal of Development Economics, 114, 172-188.

